论文标题
使用宽带Rayleigh-Wave光学相干弹性弹力术的表皮,真皮和皮下注射的体内刚度测量
In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography
论文作者
论文摘要
旅行波光学相干弹性弹力(OCE)是一种测量生物组织刚度的有前途的技术。虽然OCE已应用于相对均匀的样品,但通过深度的弹性弹性明显变化的组织带来了挑战,需要具有足够的分辨率和准确性的深度分辨测量。在这里,我们开发了一种宽带雷利波OCE技术,能够通过分析在0.1-10 kHz的较大频率范围内可靠地分析泄漏的雷利表面波的分散,从而可靠地测量3个主要皮肤层(表皮,真皮和皮下注射)的弹性模量。我们表明,以前未开发的高频范围为4-10 kHz对于解决薄表皮至关重要,而低频范围为0.2-1 kHz,足以探测真皮和更深的下皮。我们开发了一个基于双重双层的逆模型,以确定所有3层中的弹性模量,并通过有限元分析和模拟皮肤幻象来验证其高精度。最后,该技术用于测量健康志愿者的前臂皮肤。表皮的模量(包括角膜层)的测量为4-10 kHz的约4 MPa,而杨氏真皮和下皮的模量分别为0.2-1 kHz约40 kpa。除了皮肤科应用外,该方法可能对具有亚MM深度分辨率的其他各种分层组织的机械分析有用。
Traveling-wave optical coherence elastography (OCE) is a promising technique to measure the stiffness of biological tissues. While OCE has been applied to relatively homogeneous samples, tissues with significantly varying elasticity through depth pose a challenge, requiring depth-resolved measurement with sufficient resolution and accuracy. Here, we develop a broadband Rayleigh-wave OCE technique capable of measuring the elastic moduli of the 3 major skin layers (epidermis, dermis, and hypodermis) reliably by analyzing the dispersion of leaky Rayleigh surface waves over a wide frequency range of 0.1-10 kHz. We show that a previously unexplored, high frequency range of 4-10 kHz is critical to resolve the thin epidermis, while a low frequency range of 0.2-1 kHz is adequate to probe the dermis and deeper hypodermis. We develop a dual bilayer-based inverse model to determine the elastic moduli in all 3 layers and verify its high accuracy with finite element analysis and skin-mimicking phantoms. Finally, the technique is applied to measure the forearm skin of healthy volunteers. The Young's modulus of the epidermis (including the stratum corneum) is measured to be ~ 4 MPa at 4-10 kHz, whereas Young's moduli of the dermis and hypodermis are about 40 and 15 kPa, respectively, at 0.2-1 kHz. Besides dermatologic applications, this method may be useful for the mechanical analysis of various other layered tissues with sub-mm depth resolution.