论文标题
Hartman-Grobman定理的代数二分法
A Hartman-Grobman theorem for algebraic dichotomies
论文作者
论文摘要
代数二分法是指数二分法的概括(Lin,JDE2009)。本文给出了Hartman-Grobman线性化定理的版本,假设线性系统接受了代数二分法,该二分法概括了Palmer的线性化定理。此外,我们证明了线性化定理中的同构(并且具有Hölder连续逆)。与指数二分法相比,代数二分法更为复杂。指数二分法导致估计值$ \ int _ { - \ infty}^{t} e^{ - α(t-s)} ds $和$ \ int_ {t}^{+\ \ \ iffty} e^{ - α(s-α(s-α(s-t)} ds $。但是,代数二分法将使我们进入$ \ int _ { - \ infty}^{t} {t} \ left(\ frac {μ(t)} {μ(s){μ(s)} \ right)^{ - α} ds $或$ \ int_ {t}^{+\ infty} \ left(\ frac {μ(s)} {μ(t)} \ right)^{ - α} ds $,其融合在Riemann的意义上是未知的。
Algebraic dichotomy is a generalization of an exponential dichotomy (Lin, JDE2009). This paper gives a version of Hartman-Grobman linearization theorem assuming that linear system admits an algebraic dichotomy, which generalizes the Palmer's linearization theorem. Besides, we prove that the homeomorphism in the linearization theorem (and has a Hölder continuous inverse). Comparing with exponential dichotomy, algebraic dichotomy is more complicate. The exponential dichotomy leads to the estimates $\int_{-\infty}^{t}e^{-α(t-s)}ds$ and $\int_{t}^{+\infty}e^{-α(s-t)}ds$ which are convergent. However, the algebraic dichotomy will leads us to $\int_{-\infty}^{t}\left(\frac{μ(t)}{μ(s)}\right)^{-α}ds$ or $\int_{t}^{+\infty}\left(\frac{μ(s)}{μ(t)}\right)^{-α}ds$, whose the convergence is unknown in the sense of Riemann.