论文标题

随机介质上高斯田地的随机均质化

Stochastic homogenization of Gaussian fields on random media

论文作者

Chiarini, Leandro, Ruszel, Wioletta M.

论文摘要

在本文中,我们研究了非同质性高斯自由场的随机均质化$ξ^{g,{\ bf a}} $和bi-laplacian fields $ξ^{b,{\ bf a}} $。它们的特征如下:对于$ f =δ$,解决方案$ u $ of $ \ nabla \ cdot \ cdot \ mathbf {a} \ nabla u = f $,$ {\ bf a} $是一个均匀椭圆的随机环境,是$ $ξ^^{g,{当$ f $是白噪声时,字段$ξ^{b,{\ bf a}} $可以将其视为相同的椭圆方程的分布解决方案。我们的结果表征了这两个字段的缩放限制,这是一个足够的常规域$ d \ subset \ mathbb {r}^d $,或在离散的圆环上。基于应用于拉普拉斯操作员$δ$的本征函数基础的随机均质化技术,我们将表明此类田地群体会融合到GFF resp的适当倍数。双拉普拉斯。限制字段​​取决于其各自的均质操作员$ \ahomδ$,并取决于环境法律$ {\ bf a} $,其常数$ \ ahom $。证明基于\ cite {armstrong2019}和\ cite {gloria2014optimal}中发现的结果。

In this article, we study stochastic homogenization of non-homogeneous Gaussian free fields $Ξ^{g,{\bf a}} $ and bi-Laplacian fields $Ξ^{b,{\bf a}}$. They can be characterized as follows: for $f=δ$ the solution $u$ of $\nabla \cdot \mathbf{a} \nabla u =f$, ${\bf a}$ is a uniformly elliptic random environment, is the covariance of $Ξ^{g,{\bf a}}$. When $f$ is the white noise, the field $Ξ^{b,{\bf a}}$ can be viewed as the distributional solution of the same elliptic equation. Our results characterize the scaling limit of such fields on both, a sufficiently regular domain $D\subset \mathbb{R}^d$, or on the discrete torus. Based on stochastic homogenization techniques applied to the eigenfunction basis of the Laplace operator $Δ$, we will show that such families of fields converge to an appropriate multiple of the GFF resp. bi-Laplacian. The limiting fields are determined by their respective homogenized operator $\ahom Δ$, with constant $\ahom$ depending on the law of the environment ${\bf a}$. The proofs are based on the results found in \cite{Armstrong2019} and \cite{gloria2014optimal}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源