论文标题
Polylla:基于末端边缘区域的多边形网络划分算法
POLYLLA: Polygonal meshing algorithm based on terminal-edge regions
论文作者
论文摘要
本文提出了一种算法,以生成一种从三角形获得的新型多边形网格。每个多边形都是由一个终端边缘区域构建的,边缘被包围,这些边缘不是共享它们的两个三角形中最长的边缘。该算法称为polylla,分为三个阶段。第一阶段包括根据输入三角剖分的每个边缘的大小标记;第二阶段使用标签系统从终端边缘区域构建多边形(简单与否)。第三阶段将每个非简单多边形变成简单的多边形。最终网格包含具有凸面和非凸形的多边形。由于基于Voronoi的网格目前是最常用的多边形网格,因此我们将网格的某些几何特性与受约束的Voronoi网格进行比较。进行了几个实验,以比较多边形的形状和大小,最终网格点和多边形的数量。对于相同的输入,Polylla网格的多边形比Voronoi网格少,并且该算法比算法更简单,更快,以生成约束的Voronoi网格。最后,我们使用虚拟元素方法(VEM)在L形域上求解Laplace方程来验证了Polylla网格。我们表明,使用Polylla网格和Voronoi网格的VEM的数值性能相似。
This paper presents an algorithm to generate a new kind of polygonal mesh obtained from triangulations. Each polygon is built from a terminal-edge region surrounded by edges that are not the longest-edge of any of the two triangles that share them. The algorithm is termed Polylla and is divided into three phases. The first phase consists of labeling each edge of the input triangulation according to its size; the second phase builds polygons (simple or not) from terminal-edges regions using the label system; and the third phase transforms each non simple polygon into simple ones. The final mesh contains polygons with convex and non convex shape. Since Voronoi based meshes are currently the most used polygonal meshes, we compare some geometric properties of our meshes against constrained Voronoi meshes. Several experiments were run to compare the shape and size of polygons, the number of final mesh points and polygons. For the same input, Polylla meshes contain less polygons than Voronoi meshes, and the algorithm is simpler and faster than the algorithm to generate constrained Voronoi meshes. Finally, we have validated Polylla meshes by solving the Laplace equation on an L-shaped domain using the Virtual Element Method (VEM). We show that the numerical performance of the VEM using Polylla meshes and Voronoi meshes is similar.