论文标题
从签名的社交图中学习立场嵌入
Learning Stance Embeddings from Signed Social Graphs
论文作者
论文摘要
社交网络分析中的一个关键挑战是了解图表中人们在大量主题上的立场或立场。尽管过去的工作已经使用签名图在社交网络中建立了建模(DIS)协议,但这些方法并未建模一系列相关主题的协议模式。例如,关于一个主题的分歧可能会使相关主题的分歧(或协议)更有可能。我们提出了姿态嵌入模型(SEM),该模型共同学习每个用户的嵌入式,并在签名的社交图中,每个主题具有不同的边缘类型。通过共同学习的用户和主题嵌入,SEM能够执行冷启动的主题立场检测,从而预测了用户对我们没有观察到的主题的立场。我们使用两个大型Twitter签名的图形数据集证明了SEM的有效性。一个数据集,Twittersg,标签(DIS)协议,使用用户之间通过推文之间的参与,以推导主题信息,签名的边缘。另一个是Birdwatchsg,利用社区报告了错误信息和误导性内容。在Twittersg和Birdwatchsg上,SEM分别显示出强大基准的39%和26%的误差降低。
A key challenge in social network analysis is understanding the position, or stance, of people in the graph on a large set of topics. While past work has modeled (dis)agreement in social networks using signed graphs, these approaches have not modeled agreement patterns across a range of correlated topics. For instance, disagreement on one topic may make disagreement(or agreement) more likely for related topics. We propose the Stance Embeddings Model(SEM), which jointly learns embeddings for each user and topic in signed social graphs with distinct edge types for each topic. By jointly learning user and topic embeddings, SEM is able to perform cold-start topic stance detection, predicting the stance of a user on topics for which we have not observed their engagement. We demonstrate the effectiveness of SEM using two large-scale Twitter signed graph datasets we open-source. One dataset, TwitterSG, labels (dis)agreements using engagements between users via tweets to derive topic-informed, signed edges. The other, BirdwatchSG, leverages community reports on misinformation and misleading content. On TwitterSG and BirdwatchSG, SEM shows a 39% and 26% error reduction respectively against strong baselines.