论文标题

在相互作用的旋转链中推断出少数体现的马尔可夫量子主方程

Inferring Markovian quantum master equations of few-body observables in interacting spin chains

论文作者

Carnazza, Francesco, Carollo, Federico, Zietlow, Dominik, Andergassen, Sabine, Martius, Georg, Lesanovsky, Igor

论文摘要

有关多体量子系统的完整信息通常是由于编码其状态所需的参数数量的指数增长(带有系统的大小),因此通常是无关的。但是,为了理解在这些系统中可以观察到的复杂现象学,通常足以考虑局部可观察物的动态或固定特性,或者最多只能具有很少的体型相关函数。这些数量通常是通过列出特定感兴趣的子系统以及将多体系统作为有效浴的其余部分来研究的。在最简单的方案中,可以通过马尔可夫量子主方程近似开放的量子动力学的子系统动力学。在这里,我们制定了找到子系统动力学的生成器作为变异问题的问题,我们使用机器学习的标准工具箱来解决,以优化。这种动态或````lindblad''发电机为感兴趣的子系统提供了相关的动态参数。重要的是,我们开发的算法的构造是可以使学习的生成器实现在物理上一致的开放量子时间进化的。我们利用这一点来学习这种动态的动力学,以学习多个体系的动态,以使我们的动力学动态概述,使我们的动态动态探索了我们的动态,我们的动态范围是我们的动态。两体子系统并利用发电机的物理一致性来对子系统动力学的固定状态进行预测。

Full information about a many-body quantum system is usually out-of-reach due to the exponential growth -- with the size of the system -- of the number of parameters needed to encode its state. Nonetheless, in order to understand the complex phenomenology that can be observed in these systems, it is often sufficient to consider dynamical or stationary properties of local observables or, at most, of few-body correlation functions. These quantities are typically studied by singling out a specific subsystem of interest and regarding the remainder of the many-body system as an effective bath. In the simplest scenario, the subsystem dynamics, which is in fact an open quantum dynamics, can be approximated through Markovian quantum master equations. Here, we formulate the problem of finding the generator of the subsystem dynamics as a variational problem, which we solve using the standard toolbox of machine learning for optimization. This dynamical or ``Lindblad" generator provides the relevant dynamical parameters for the subsystem of interest. Importantly, the algorithm we develop is constructed such that the learned generator implements a physically consistent open quantum time-evolution. We exploit this to learn the generator of the dynamics of a subsystem of a many-body system subject to a unitary quantum dynamics. We explore the capability of our method to recover the time-evolution of a two-body subsystem and exploit the physical consistency of the generator to make predictions on the stationary state of the subsystem dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源