论文标题

激子气相的证据及其在单层1T-ZRTE2中的凝结。

Evidences for the exciton gas phase and its condensation in monolayer 1T-ZrTe2

论文作者

Song, Yekai, Jia, Chunjing, Xiong, Hongyu, Wang, Binbin, Jiang, Zhicheng, Huang, Kui, Hwang, Jinwoong, Li, Zhuojun, Hwang, Choongyu, Liu, Zhongkai, Shen, Dawei, Sobota, Jonathan, Kirchmann, Patrick, Xue, Jiamin, Devereaux, Thomas P., Mo, Sung-Kwan, Shen, Zhi-Xun, Tang, Shujie

论文摘要

激子绝缘子(EI)是由固体中电子孔相互作用绑定的激子的玻色子凝结(BEC),可以支持高温BEC过渡。 EI的材料实现是难以捉摸的,这是由于将其与常规电荷密度波(CDW)状态区分开的困难进一步挑战。在BEC限制中,预敏的激气阶段是将EI与常规CDW区分开的标志,但缺乏直接的实验证据。在这里,我们报告了超出$ 2 \ times2 $ CDW接地状态以外的一个独特的相关阶段,该阶段在外延生长的单层1T-ZRTE2及其通过角度分辨光发射光谱(ARPES)和扫描隧道隧道显微镜(STM)进行了研究。结果表明,在两步过程中,新型的带和能量依赖性折叠行为,在凝结到最终CDW状态之前由激子相证明。通过载体密度依赖的CDW状态抑制对原始条带结构恢复的实验和理论预测之间的良好一致性进一步证实了单层1T-ZRTE2作为EI。我们的发现提供了一个多功能的二维平台,可以调整激子效应。

The excitonic insulator (EI) is a Bose-Einstein condensation (BEC) of excitons bound by electron-hole interaction in a solid, which could support high-temperature BEC transition. The material realization of EI has been elusive, which is further challenged by the difficulty of distinguishing it from a conventional charge density wave (CDW) state. In the BEC limit, the pre-condensation exciton gas phase is a hallmark to distinguish EI from conventional CDW, yet direct experimental evidence has been lacking. Here we report a distinct correlated phase beyond the $2\times2$ CDW ground state emerging in epitaxially grown monolayer 1T-ZrTe2 and its investigation by angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The results show novel band- and energy-dependent folding behavior in a two-step process, evidenced by an exciton gas phase prior to its condensation into the final CDW state. The excellent agreement between experiments and theoretical predictions on the recovery of the pristine band structure by carrier-density-dependent suppression of the CDW state further corroborates the monolayer 1T-ZrTe2 as an EI. Our findings provide a versatile two-dimensional platform that allows tuning of the excitonic effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源