论文标题
化学环境表示的反转
Inversion of the chemical environment representations
论文作者
论文摘要
用于材料设计的机器学习生成方法是通过在适当的原子特征(通常称为结构描述符)上代表给定的化学结构(固体或分子)来构建的。这些必须完全描述系统,必须促进训练过程,并且必须可逆,以便可以提取与模型输出相对应的原子配置。通常,最有效的结构描述符不会自动满足最后一个要求,即表示表示并非直接可逆。这种缺点严重限制了我们选择的自由,以选择问题的最合适描述符,从而灵活地构建生成模型。在这项工作中,我们提出了一种一般优化方法,能够反转任何化学环境的局部多体描述符,回到笛卡尔表示。然后将算法与局部结构的双光谱表示一起实现,并为许多分子证明。因此,此处介绍的方案代表了结构描述符反转的一般方法,从而实现了有效的结构生成模型的构建。
Machine-learning generative methods for material design are constructed by representing a given chemical structure, either a solid or a molecule, over appropriate atomic features, generally called structural descriptors. These must be fully descriptive of the system, must facilitate the training process and must be invertible, so that one can extract the atomic configurations corresponding to the output of the model. In general, this last requirement is not automatically satisfied by the most efficient structural descriptors, namely the representation is not directly invertible. Such drawback severely limits our freedom of choice in selecting the most appropriate descriptors for the problem, and thus our flexibility to construct generative models. In this work, we present a general optimization method capable of inverting any local many-body descriptor of the chemical environment, back to a cartesian representation. The algorithm is then implemented together with the bispectrum representation of the local structure and demonstrated for a number of molecules. The scheme presented here, thus, represents a general approach to the inversion of structural descriptors, enabling the construction of efficient structural generative models.