论文标题

在不确定的基于随机的不确定领域的不确定传播下的结构的强大拓扑优化

Robust topology optimization of structures under uncertain propagation of imprecise stochastic-based uncertain field

论文作者

Gao, Kang, Doc, Duy Minh, Chu, Sheng, Wu, Gang, Kim, H. Alicia, Featherston, Carol A.

论文摘要

这项研究介绍了考虑不精确的随机场参数的新型计算框架(RTO)。与最坏情况不同的方法不同,当前的方法为合规性的平均值和标准偏差以及各种情况的结构的优化拓扑布局提供了上限和下限。在提出的方法中,使用具有不同置信区间的参数化P-box确定了不精确的随机场变量。 Karhunen-Loève(K-L)扩展扩展以提供不精确的随机场的光谱描述。与正交函数的线性组合结合使用的线性叠加方法用于获得结构合规的第一阶统计矩和二阶统计矩的明确数学表达式。然后,进行间隔灵敏度分析,将正交相似性变换(OST)方法应用于使用组合方法(CA)在每次迭代时有效搜索的每个中间变量的边界。最后,通过将所提出方法的输出与使用粒子群优化(PSO)和Quasi-Monte-Monte-Carlo Simulation(QMCS)方法进行比较,对工作的有效性,准确性和适用性进行了严格检查。提出了三个具有不精确随机载荷的不同数值示例,以显示研究的有效性和可行性。

This study introduces a novel computational framework for Robust Topology Optimization (RTO) considering imprecise random field parameters. Unlike the worst-case approach, the present method provides upper and lower bounds for the mean and standard deviation of compliance as well as the optimized topological layouts of a structure for various scenarios. In the proposed approach, the imprecise random field variables are determined utilizing parameterized p-boxes with different confidence intervals. The Karhunen-Loève (K-L) expansion is extended to provide a spectral description of the imprecise random field. The linear superposition method in conjunction with a linear combination of orthogonal functions is employed to obtain explicit mathematical expressions for the first and second order statistical moments of the structural compliance. Then, an interval sensitivity analysis is carried out, applying the Orthogonal Similarity Transformation (OST) method with the boundaries of each of the intermediate variable searched efficiently at every iteration using a Combinatorial Approach (CA). Finally, the validity, accuracy, and applicability of the work are rigorously checked by comparing the outputs of the proposed approach with those obtained using the particle swarm optimization (PSO) and Quasi-Monte-Carlo Simulation (QMCS) methods. Three different numerical examples with imprecise random field loads are presented to show the effectiveness and feasibility of the study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源