论文标题
De Sitter组及其表示形式:关于Sitterian基本系统概念的窗口
The de Sitter group and its representations: a window on the notion of de Sitterian elementary systems
论文作者
论文摘要
我们在Wigner的意义上回顾了(ds)时空中(“免费”)基本系统的构建,与DS(相对性)组的单一不可约表示(UIR)相关。这项研究强调了此类系统的制定中引起的概念问题,并以数学上严格的方式讨论了已知结果。特别注意:从经典理论到量子理论的“平滑”过渡;从局部(“切线”)Minkowskian观察者的角度来看,在消失的曲率下的物理内容;在长臂猿温度的意义上,(在量子水平上)(在量子水平上)。我们回顾了DS组与DS时空和经典相位空间的描述有关的三个分解。我们回顾了这些组分解发出的(投影)DS UIR的构建。 (投影)携带UIR(在某些限制意义上)识别量子(“单粒子”)状态DS基本系统的空间的希尔伯特空间。根据Wightman-Gärding公理和复杂的Riemannian流形中的分析性要求采用了公认的Fock程序,我们进行了DS SpaceTime中基本系统的一致量子场理论(QFT)。该DS QFT配方与相应的Minkowskian One与相应的光谱条件与相应的光谱条件与一定的几何光谱条件取代。
We review the construction of ("free") elementary systems in de Sitter (dS) spacetime, in the Wigner sense, as associated with unitary irreducible representations (UIR's) of the dS (relativity) group. This study emphasizes the conceptual issues arising in the formulation of such systems and discusses known results in a mathematically rigorous way. Particular attention is paid to: "smooth" transition from classical to quantum theory; physical content under vanishing curvature, from the point of view of a local ("tangent") Minkowskian observer; and thermal interpretation (on the quantum level), in the sense of the Gibbons-Hawking temperature. We review three decompositions of the dS group physically relevant for the description of dS spacetime and classical phase spaces of elementary systems living on it. We review the construction of (projective) dS UIR's issued from these group decompositions. (Projective) Hilbert spaces carrying the UIR's (in some restricted sense) identify quantum ("one-particle") states spaces of dS elementary systems. Adopting a well-established Fock procedure, based on the Wightman-Gärding axioms and on analyticity requirements in the complexified Riemannian manifold, we proceed with a consistent quantum field theory (QFT) formulation of elementary systems in dS spacetime. This dS QFT formulation closely parallels the corresponding Minkowskian one, while the usual spectral condition is replaced by a certain geometric Kubo-Martin-Schwinger (KMS) condition equivalent to a precise thermal manifestation of the associated "vacuum" states.