论文标题
泛瘤犬皮肤癌组织学(CATCH)数据集
Pan-tumor CAnine cuTaneous Cancer Histology (CATCH) dataset
论文作者
论文摘要
由于形态学的相似性,皮肤肿瘤的组织学部分分化为个体亚型可能具有挑战性。最近,基于深度学习的方法证明了它们在这方面支持病理学家的潜力。但是,这些监督算法中的许多都需要大量注释的数据才能进行稳健开发。我们提供了一个公开可用的数据集,该数据集是七个不同的犬皮肤肿瘤的350张全面幻灯片图像,其中有13种组织学类别的12,424个多边形注释,包括7种皮肤肿瘤亚型。在评价者间实验中,我们显示了提供的标签的高稠度,尤其是对于肿瘤注释。我们通过训练深层神经网络来进一步验证数据集,以完成组织分割和肿瘤亚型分类的任务。我们的肿瘤尤其是0.7047的类平均Jaccard系数为0.7047,尤其是0.9044。对于分类,我们达到了0.9857的幻灯片级准确性。由于犬皮肤肿瘤对人肿瘤具有各种组织学同源性,因此该数据集的附加值不限于兽医病理学,而是扩展到更一般的应用领域。
Due to morphological similarities, the differentiation of histologic sections of cutaneous tumors into individual subtypes can be challenging. Recently, deep learning-based approaches have proven their potential for supporting pathologists in this regard. However, many of these supervised algorithms require a large amount of annotated data for robust development. We present a publicly available dataset of 350 whole slide images of seven different canine cutaneous tumors complemented by 12,424 polygon annotations for 13 histologic classes, including seven cutaneous tumor subtypes. In inter-rater experiments, we show a high consistency of the provided labels, especially for tumor annotations. We further validate the dataset by training a deep neural network for the task of tissue segmentation and tumor subtype classification. We achieve a class-averaged Jaccard coefficient of 0.7047, and 0.9044 for tumor in particular. For classification, we achieve a slide-level accuracy of 0.9857. Since canine cutaneous tumors possess various histologic homologies to human tumors the added value of this dataset is not limited to veterinary pathology but extends to more general fields of application.