论文标题

部分可观测时空混沌系统的无模型预测

Near-Surface Electrical Characterisation of Silicon Electronic Devices Using Focused keV Ions

论文作者

Robson, Simon G., Räcke, Paul, Jakob, Alexander M., Collins, Nicholas, Firgau, Hannes R., Schmitt, Vivien, Mourik, Vincent, Morello, Andrea, Mayes, Edwin, Spemann, Daniel, Jamieson, David N.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The demonstration of universal quantum logic operations near the fault-tolerance threshold establishes ion-implanted near-surface donor atoms as a plausible platform for scalable quantum computing in silicon. The next technological step forward requires a deterministic fabrication method to create large-scale arrays of donors, featuring few hundred nanometre inter-donor spacing. Here, we explore the feasibility of this approach by implanting low-energy ions into silicon devices featuring an enlarged 60x60 $μ$m sensitive area and an ultra-thin 3.2 nm gate oxide - capable of hosting large-scale donor arrays. By combining a focused ion beam system incorporating an electron-beam-ion-source with in-vacuum ultra-low noise ion detection electronics, we first demonstrate a versatile method to spatially map the device response characteristics to shallowly implanted 12 keV $^1$H$_2^+$ ions. Despite the weak internal electric field, near-unity charge collection efficiency is obtained from the entire sensitive area. This can be explained by the critical role that the high-quality thermal gate oxide plays in the ion detection response, allowing an initial rapid diffusion of ion induced charge away from the implant site. Next, we adapt our approach to perform deterministic implantation of a few thousand 24 keV $^{40}$Ar$^{2+}$ ions into a predefined micro-volume, without any additional collimation. Despite the reduced ionisation from the heavier ion species, a fluence-independent detection confidence of $\geq$99.99% was obtained. Our system thus represents not only a new method for mapping the near-surface electrical landscape of electronic devices, but also an attractive framework towards mask-free prototyping of large-scale donor arrays in silicon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源