论文标题
MIMO-OTF的低复杂性线性多样性检测器
Low-Complexity Linear Diversity-Combining Detector for MIMO-OTFS
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper presents a low complexity detector for multiple-input multiple-output (MIMO) systems based on the recently proposed orthogonal time frequency space (OTFS) modulation. In the proposed detector, the copies of the transmitted symbol-vectors received through the different diversity branches (propagation paths and receive antennas) are linearly combined using the maximum ratio combining (MRC) technique to iteratively improve the signal to interference plus noise ratio (SINR) at the output of the combiner. To alleviate the performance degradation due to spatial correlation at the receiver antennas, we present a sample-based method to estimate such correlation and find the optimized combining weights for MRC from the estimated correlation matrix. The detector performance and complexity improve over the linear minimum mean square error (LMMSE) and message passing (MP) detectors proposed in the literature for MIMO-OTFS.