论文标题

Hochschild的扭曲交叉产品和扭曲分级Hecke代数的同源性

Hochschild homology of twisted crossed products and twisted graded Hecke algebras

论文作者

Solleveld, Maarten

论文摘要

令A为有限G组的动作,让$ \ natural $为$ g $的2循环,并考虑扭曲的交叉产品$ a \ rtimes \ c [g,\ natural] $。我们确定了两类代数a的$ a \ rtimes \ c [g,\ natural] $的Hochschild同源性。 - 非主流仿射品种的常规功能环, - 分级Hecke代数。 结果是通过(虚拟)表示的代数家族来实现的,并将hochschild同源性作为模块的描述在$ a \ rtimes \ c [g,\ natural] $的中心上。本文为计算还原性P-ADIC组的Hecke代数的Hochschild同源性进行了准备。

Let A be a \C-algebra with an action of a finite group G, let $\natural$ be a 2-cocycle on $G$ and consider the twisted crossed product $A \rtimes \C [G,\natural]$. We determine the Hochschild homology of $A \rtimes \C [G,\natural]$ for two classes of algebras A: - rings of regular functions on nonsingular affine varieties, - graded Hecke algebras. The results are achieved via algebraic families of (virtual) representations and include a description of the Hochschild homology as module over the centre of $A \rtimes \C [G,\natural]$. This paper prepares for a computation of the Hochschild homology of the Hecke algebra of a reductive p-adic group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源