论文标题
非线性schrödinger层次结构的矩阵回报方法
The matrix-resolvent method to tau-functions for the nonlinear Schrödinger hierarchy
论文作者
论文摘要
我们将计算tau功能的对数衍生物计算对数衍生物的矩阵分析方法扩展到非线性schrödinger(NLS)层次结构。基于这种方法,我们提供了dubrovin和Zhang定理的详细证明,介绍了Toda晶格层次结构与NLS层次结构之间的关系。作为应用程序,我们对遗传基质模型中计算相关器的算法进行了改进。
We extend the matrix-resolvent method of computing logarithmic derivatives of tau-functions to the nonlinear Schrödinger (NLS) hierarchy. Based on this method we give a detailed proof of a theorem of Carlet, Dubrovin and Zhang regarding the relationship between the Toda lattice hierarchy and the NLS hierarchy. As an application, we give an improvement of an algorithm of computing correlators in hermitian matrix models.