论文标题
带有椭圆形的封闭地球学的颠簸鳍片上的封闭的大地测量学多样性
Multiplicity of closed geodesics on bumpy Finsler manifolds with elliptic closed geodesics
论文作者
论文摘要
让$ m $成为一个紧凑的简单连接的流形,满足$ h^*(m; \ mathbf {q})\ cong t_ {d,n+1}(x)$ for integers $ d \ ge 2 $和$ n \ ge 1 $。如果所有Prime在$(m,f)上的所有主要封闭的大地测量公司都带有不可逆转的凹凸不平的Finsler $ f $是椭圆机,那么要么存在$ \ frac {dn(n+1)} {2} $(当$ d \ ge 2 $ is偶尔)或$ d+1)$(当$ d+1)$(当$ d $ d $ deple nimply Geodise ode geodesices)或geodesices nistion nistion geodesices nistical nistions,
Let $M$ be a compact simply connected manifold satisfying $H^*(M;\mathbf{Q})\cong T_{d,n+1}(x)$ for integers $d\ge 2$ and $n\ge 1$. If all prime closed geodesics on $(M,F)$ with an irreversible bumpy Finsler metric $F$ are elliptic, either there exist exactly $\frac{dn(n+1)}{2}$ (when $d\ge 2$ is even) or $(d+1)$ (when $d\ge 3$ is odd) distinct closed geodesics, or there exist infinitely many distinct closed geodesics.