论文标题

Figaro:通过精细的艺术控制产生象征性音乐

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

论文作者

von Rütte, Dimitri, Biggio, Luca, Kilcher, Yannic, Hofmann, Thomas

论文摘要

近年来,用深层神经网络产生音乐一直是积极研究的领域。尽管生成的样品的质量一直在稳步提高,但大多数方法只能对生成的序列(如果有)施加最小的控制。我们提出了自我监督的描述到序列任务,该任务允许在全球范围内进行细粒度的可控生成。我们通过在序列到序列建模设置中提取相应的高级描述来提取有关目标序列的高级特征并学习序列的条件分布。我们通过将描述到序列建模应用于符号音乐来训练Figaro(通过基于注意力的稳健控制,通过基于注意力的稳健控制)训练Figaro。通过将学习的高水平特征与域知识相结合,域知识充当强烈的归纳偏见,该模型实现了最新的象征性音乐生成,并概括了训练分布的范围。

Generating music with deep neural networks has been an area of active research in recent years. While the quality of generated samples has been steadily increasing, most methods are only able to exert minimal control over the generated sequence, if any. We propose the self-supervised description-to-sequence task, which allows for fine-grained controllable generation on a global level. We do so by extracting high-level features about the target sequence and learning the conditional distribution of sequences given the corresponding high-level description in a sequence-to-sequence modelling setup. We train FIGARO (FIne-grained music Generation via Attention-based, RObust control) by applying description-to-sequence modelling to symbolic music. By combining learned high level features with domain knowledge, which acts as a strong inductive bias, the model achieves state-of-the-art results in controllable symbolic music generation and generalizes well beyond the training distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源