论文标题

可压缩霍尔磁流体动力湍流的精确定律的深入数值研究

An in-depth numerical study of exact laws for compressible Hall magnetohydrodynamic turbulence

论文作者

Ferrand, R., Sahraoui, F., Galtier, S., Andrés, N., Mininni, P., Dmitruk, P.

论文摘要

近年来,已经得出了有关可压缩磁流失动力(MHD)和Hall-MHD(CHMHD)湍流的各种确切法律。除了其基本理论利益外,这些定律通常用于估计从航天器观测值的能量耗散率,以解决相关的各种问题,例如,加热太阳能风(SW)和磁层等离子体。在这里,我们使用各种$ 1024^3 $直接数值仿真(DNS)数据的自由度等温CHMHD湍流(用于湍流的地球物理高阶套件)来分析最近派生的两项最近派生的精确法律。模拟反映了初始马赫数和背景磁场的不同强度。该分析证明了惯性范围内这两个定律的等效性,并将霍尔效应的强度与亚离子尺度下级联速率的振幅联系起来。当以其一般形式(即不限于惯性范围)采取有关平稳性假设有效性或模拟中强迫的有效性的一些微妙之处。我们表明,湍流的自由纪念特性引起了从大小的强迫向存在量表依赖的能量储层的转变,从而加剧了级联或耗散。即使未充分验证平稳性假设,确切定律的降低形式(在惯性范围内有效)最终也成立。

Various exact laws governing compressible magnetohydrodynamic (MHD) and Hall-MHD (CHMHD) turbulence have been derived in recent years. Other than their fundamental theoretical interest, these laws are generally used to estimate the energy dissipation rate from spacecraft observations in order to address diverse problems related, e.g., to heating of the solar wind (SW) and magnetospheric plasmas. Here we use various $1024^3$ direct numerical simulation (DNS) data of free-decay isothermal CHMHD turbulence obtained with the GHOST code (Geophysical High-Order Suite for Turbulence) to analyze two of the recently derived exact laws. The simulations reflect different intensities of the initial Mach number and the background magnetic field. The analysis demonstrates the equivalence of the two laws in the inertial range and relates the strength of the Hall effect to the amplitude of the cascade rate at sub-ion scales. When taken in their general form (i.e., not limited to the inertial range) some subtleties regarding the validity of the stationarity assumption or the absence of the forcing in the simulations are discussed. We show that the free-decay nature of the turbulence induces a shift from a large scale forcing towards the presence of a scale-dependent reservoir of energy fueling the cascade or dissipation. The reduced form of the exact laws (valid in the inertial range) ultimately holds even if the stationarity assumption is not fully verified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源