论文标题

在GRH下,$ L $ functions的估算值有效申请

Estimates for $L$-functions in the critical strip under GRH with effective applications

论文作者

Simonič, Aleksander

论文摘要

假设有一个普遍的Riemann假设,我们为$ \ log {\ Mathcal {\ Mathcal {l}(s)} $和$ \ Mathcal {l}'(s)/\ Mathcal {l}(l}(l} s)$在$ \ Mathcal disem的1线附近(s)$ \ l}(s)的纽约(s)$ \ l}(s){ Zeta功能。为此,我们将Littlewood众所周知的条件结果推广到具有多项式Euler产品的Selberg类中的功能,为此我们还建立了合适的凸度估计值。作为应用程序,我们为Mertens功能提供有条件有效的估计。

Assuming the Generalized Riemann Hypothesis, we provide explicit upper bounds for moduli of $\log{\mathcal{L}(s)}$ and $\mathcal{L}'(s)/\mathcal{L}(s)$ in the neighbourhood of the 1-line when $\mathcal{L}(s)$ are the Riemann, Dirichlet and Dedekind zeta-functions. To do this, we generalize Littlewood's well known conditional result to functions in the Selberg class with a polynomial Euler product, for which we also establish a suitable convexity estimate. As an application we provide conditional and effective estimate for the Mertens function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源