论文标题
floquet时间晶体在驱动的旋转系统中,全能$ p $ - 体互动
Floquet time crystals in driven spin systems with all-to-all $p$-body interactions
论文作者
论文摘要
我们显示了浮力时间晶体(FTC)阶段在定期驱动的$ p $ -SPIN型号的FLOQUET动力学中的出现,该动力学描述了具有全$ P $体互动的Spin-1/2颗粒的集合。鉴于这些模型的平均场地性质,我们以热力学限制准确对待问题,并表明,对于给定的$ p $,这些系统可以托管各种稳健的时间晶状体响应,其中$ nt $是$ nt $,其中$ t $是驱动器的时期,而$ n $ a $是2到$ p $之间的integer。特别是,四体相互作用($ p = 4 $)的情况都会引起通常的上周期的晶体,也导致了新型的quadrupling阶段。我们开发了一个综合框架,以预测经典区域保护图中的稳健亚谐波响应,并将其用作预测量子状态中所得平均场FTC阶段的稳定性的基础。我们的分析表明,随着周期的增加,时间晶体行为的鲁棒性会降低,并在时间晶体的出现之间建立联系,该时间晶体的出现(由特征状态下有序和鲁棒的亚谐波反应描述,而激发态的现象学和动态量子相变的现象学。最后,对于托管两个或多个共存时间晶体阶段的模型,我们定义了协议,其中可以通过外部控制参数的非周期性调制来改变系统的周期性亚谐波响应。
We show the emergence of Floquet time crystal (FTC) phases in the Floquet dynamics of periodically driven $p$-spin models, which describe a collection of spin-1/2 particles with all-to-all $p$-body interactions. Given the mean-field nature of these models, we treat the problem exactly in the thermodynamic limit and show that, for a given $p$, these systems can host various robust time-crystalline responses with period $nT$, where $T$ is the period of the drive and $n$ an integer between 2 and $p$. In particular, the case of four-body interactions ($p=4$) gives rise to both a usual period-doubling crystal, and also a novel period-quadrupling phase. We develop a comprehensive framework to predict robust subharmonic response in classical area-preserving maps, and use this as a basis to predict the occurrence and characterize the stability of the resulting mean-field FTC phases in the quantum regime. Our analysis reveals that the robustness of the time-crystal behavior is reduced as their period increases, and establishes a connection between the emergence of time crystals, described by eigenstate ordering and robust subharmonic response, and the phenomenology of excited state and dynamical quantum phase transitions. Finally, for the models hosting two or more coexisting time crystal phases, we define protocols where the periodic subharmonic response of the system can be varied in time via the non-periodic modulation of an external control parameter.