论文标题
平面中重复角度的角度,具有代数切线的角度
Repeated Angles in the Plane for Angles with Algebraic Tangents
论文作者
论文摘要
我们用$ω(n^2 \ log n)构建一组点,每当$ \ tan(θ)$都在$ \ mathbb {q} $上,确定一个角度$θ$,与Pach和Sharir的上限匹配。这在原始结构上有所改善,仅适用于$ \ tan(θ)= a \ sqrt {m}/b $,带有$ a,b,m $阳性整数。
We construct a set of points with $Ω(n^2\log n)$ triples determining an angle $θ$ whenever $\tan(θ)$ is algebraic over $\mathbb{Q}$, matching the upper bound of Pach and Sharir. This improves upon the original construction, which was optimal only for $\tan(θ)=a\sqrt{m}/b$ with $a,b,m$ positive integers.