论文标题
随机树突在混合信号神经形态处理系统中启用在线学习
Stochastic dendrites enable online learning in mixed-signal neuromorphic processing systems
论文作者
论文摘要
边缘计算应用程序中所需的严格内存和功率限制使事件驱动的神经形态系统成为有前途的技术。片上的在线学习提供了这样的系统,能够学习传入数据的统计数据并适应其更改。对事件驱动的非形态系统实施在线学习需要(i)基于尖峰的学习算法,该算法仅使用来自流数据中的本地信息来计算重量更新,(ii)将这些权重更新映射到有限的位精度存储器上,并且(iii)以强大的方式执行此操作,而不会导致不必要的更新,因为该系统不必要地达到其最佳输出。最近的神经科学研究表明,皮质神经元的树突隔室如何在生物神经网络中解决这些问题。受这些研究的启发,我们提出了基于尖峰的学习循环,以实施随机的树突状在线学习。电路嵌入使用180nm工艺制造的原型尖峰神经网络中。遵循算法 - 电路共同设计方法,我们提出电路和行为模拟结果,以证明学习规则特征。我们使用具有4位精度权重的单层网络的行为模拟验证了提出的方法,该方法应用于MNIST基准测试,并证明了达到精度水平高于85%的结果。
The stringent memory and power constraints required in edge-computing sensory-processing applications have made event-driven neuromorphic systems a promising technology. On-chip online learning provides such systems the ability to learn the statistics of the incoming data and to adapt to their changes. Implementing online learning on event driven-neuromorphic systems requires (i) a spike-based learning algorithm that calculates the weight updates using only local information from streaming data, (ii) mapping these weight updates onto limited bit precision memory and (iii) doing so in a robust manner that does not lead to unnecessary updates as the system is reaching its optimal output. Recent neuroscience studies have shown how dendritic compartments of cortical neurons can solve these problems in biological neural networks. Inspired by these studies we propose spike-based learning circuits to implement stochastic dendritic online learning. The circuits are embedded in a prototype spiking neural network fabricated using a 180nm process. Following an algorithm-circuits co-design approach we present circuits and behavioral simulation results that demonstrate the learning rule features. We validate the proposed method using behavioral simulations of a single-layer network with 4-bit precision weights applied to the MNIST benchmark and demonstrating results that reach accuracy levels above 85%.