论文标题
磁弹性对声速的原子模拟
Atomistic simulations of magnetoelastic effects on sound velocity
论文作者
论文摘要
在这项工作中,我们利用原子自旋晶格模拟来检查磁相互作用如何影响通过铁磁物质的声波传播。为了实现这一目标,我们使用三种基于动能的振荡,有限的置换派生的力和对弹性常数的校正的三种不同方法,表征了BCC铁(一种原型铁磁材料)中的声波速度。在自旋晶格框架内成功地应用这些方法,我们发现与西蒙效应(包括高阶项)相处得很好。与实验类似,与沿[001]方向传播的横向和纵向波相关的形态系数是从速度数据的分数变化中提取的。目前的努力代表了磁弹性建模功能的进步,该功能可以加快未来磁场设备的设计。
In this work, we leverage atomistic spin-lattice simulations to examine how magnetic interactions impact the propagation of sound waves through a ferromagnetic material. To achieve this, we characterize the sound wave velocity in BCC iron, a prototypical ferromagnetic material, using three different approaches that are based on the oscillations of kinetic energy, finite-displacement derived forces, and corrections to the elastic constants, respectively. Successfully applying these methods within the spin-lattice framework, we find good agreement with the Simon effect including high order terms. In analogy to experiments, morphic coefficients associated with the transverse and longitudinal waves propagating along the [001] direction are extracted from fits to the fractional change in velocity data. The present efforts represent an advancement in magnetoelastic modelling capabilities which can expedite the design of future magneto-acoustic devices.