论文标题

智能农场IoT-UAV网络中基于学习的基于学习的截止日期和电池可卸载

Reinforcement Learning-Based Deadline and Battery-Aware Offloading in Smart Farm IoT-UAV Networks

论文作者

Nguyen, Anne Catherine, Pamuklu, Turgay, Syed, Aisha, Kennedy, W. Sean, Erol-Kantarci, Melike

论文摘要

具有安装基站的无人飞行器(UAV)是一项有前途的技术,用于监测智能农场。他们可以为广泛的农业地区提供沟通和计算服务。在多访问边缘计算基础架构的协助下,空中基站(ABS)网络可以为需要处理由现场部署的IoT设备提供的截止日期关键任务提供节能解决方案。在本文中,我们介绍了一个多目标最大化问题和基于Q的学习方法,该方法旨在在其截止日期之前处理这些任务,同时考虑无人机的悬停时间。我们还提出了三个启发式基线,以评估我们的方法的性能。此外,我们引入了一个整数线性编程(ILP)模型,以定义我们目标函数的上限。结果表明,Q学习在剩余能量水平和延迟违规百分比方面优于基准。

Unmanned aerial vehicles (UAVs) with mounted base stations are a promising technology for monitoring smart farms. They can provide communication and computation services to extensive agricultural regions. With the assistance of a Multi-Access Edge Computing infrastructure, an aerial base station (ABS) network can provide an energy-efficient solution for smart farms that need to process deadline critical tasks fed by IoT devices deployed on the field. In this paper, we introduce a multi-objective maximization problem and a Q-Learning based method which aim to process these tasks before their deadline while considering the UAVs' hover time. We also present three heuristic baselines to evaluate the performance of our approaches. In addition, we introduce an integer linear programming (ILP) model to define the upper bound of our objective function. The results show that Q-Learning outperforms the baselines in terms of remaining energy levels and percentage of delay violations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源