论文标题

超低参数denoising:计算机断层扫描中可训练的双边滤波器层

Ultra Low-Parameter Denoising: Trainable Bilateral Filter Layers in Computed Tomography

论文作者

Wagner, Fabian, Thies, Mareike, Gu, Mingxuan, Huang, Yixing, Pechmann, Sabrina, Patwari, Mayank, Ploner, Stefan, Aust, Oliver, Uderhardt, Stefan, Schett, Georg, Christiansen, Silke, Maier, Andreas

论文摘要

计算机断层扫描被广泛用作成像工具,可将三维结构可视化,并具有富有表现力的骨骼对比度。但是,CT分辨率和辐射剂量紧密地纠缠,强调了低剂量CT与复杂的Denoising算法的重要性。大多数数据驱动的denoisisiques均基于深层神经网络,因此包含数十万个可训练的参数,使它们难以理解且容易预测失败。开发可理解且强大的deno算法实现最先进的性能有助于最大程度地减少辐射剂量,同时保持数据完整性。这项工作为基于双边滤波的想法提供了开源CT Denoising框架。我们提出了一个双边滤波器,该滤波器可以通过计算向其超参数及其输入的梯度流来计算梯度流,以纯粹的数据驱动方式进行优化并以纯粹的数据驱动方式进行优化。证明了在纯图像到图像管道中以及跨不同域(例如原始检测器数据和重建体积)使用可区分的反向注射层中的降解。尽管每个滤波器层仅使用三个空间参数和一个范围参数,但提出的DeNoising Pipelines可以使用具有数十万个参数的深层最新Denoising架构竞争。 SSIM和PSNR在X射线显微镜骨数据(0.7053和33.10)和2016年低剂量CT Grand挑战数据集(0.9674和43.07)上实现了竞争性降解性能。由于具有明确定义的效果的可训练参数的数量极少,因此在拟议的管道中的任何时间都可以保证预测依赖和数据完整性,与大多数其他基于深度学习的denoising架构相比。

Computed tomography is widely used as an imaging tool to visualize three-dimensional structures with expressive bone-soft tissue contrast. However, CT resolution and radiation dose are tightly entangled, highlighting the importance of low-dose CT combined with sophisticated denoising algorithms. Most data-driven denoising techniques are based on deep neural networks and, therefore, contain hundreds of thousands of trainable parameters, making them incomprehensible and prone to prediction failures. Developing understandable and robust denoising algorithms achieving state-of-the-art performance helps to minimize radiation dose while maintaining data integrity. This work presents an open-source CT denoising framework based on the idea of bilateral filtering. We propose a bilateral filter that can be incorporated into a deep learning pipeline and optimized in a purely data-driven way by calculating the gradient flow toward its hyperparameters and its input. Denoising in pure image-to-image pipelines and across different domains such as raw detector data and reconstructed volume, using a differentiable backprojection layer, is demonstrated. Although only using three spatial parameters and one range parameter per filter layer, the proposed denoising pipelines can compete with deep state-of-the-art denoising architectures with several hundred thousand parameters. Competitive denoising performance is achieved on x-ray microscope bone data (0.7053 and 33.10) and the 2016 Low Dose CT Grand Challenge dataset (0.9674 and 43.07) in terms of SSIM and PSNR. Due to the extremely low number of trainable parameters with well-defined effect, prediction reliance and data integrity is guaranteed at any time in the proposed pipelines, in contrast to most other deep learning-based denoising architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源