论文标题

在有限字段上的n-to-1映射的特征和构造

Characterizations and constructions of n-to-1 mappings over finite fields

论文作者

Niu, Tailin, Li, Kangquan, Qu, Longjiang, Li, Chao

论文摘要

$ n $ -to- $ 1 $映射在许多领域都有广泛的应用,尤其是在密码学,有限的几何,编码理论和组合设计中。在本文中,研究了许多类别的$ n $ - 至$ 1 $映射的有限字段。首先,我们通过Walsh Transform提供了$ \ Mathbb {f} _ {p^m} $的一般$ n $ -to-to- $ 1 $ 1 $映射的特征。然后,我们完全确定$ 3 $ -to- $ 1 $多项式,学位不超过$ \ \ \ \ \玛理布{f} _ {p^{m}} $。此外,我们获得了一个类似AGW的标准,用于表征$ n $ -to- $ 1 $ 1 $的属性之间的等效关系,该映射属于有限的套件$ a $,以及$ a $ a $的另一个映射的另一个映射。最后,我们将类似AGW的标准应用于多种形式的多项式,并获得一些明确的$ n $ -to-to- $ 1 $映射。尤其是,从环体观点的角度来看,$ x^rh \ left(x^s \ right)$的三个明确构造,以及提供$ n $ -to- $ 1 $ 1 $映射的几类$ g \ left(x^{q^k} -x +δ\ uight) +cx $。

$n$-to-$1$ mappings have wide applications in many areas, especially in cryptography, finite geometry, coding theory and combinatorial design. In this paper, many classes of $n$-to-$1$ mappings over finite fields are studied. First, we provide a characterization of general $n$-to-$1$ mappings over $\mathbb{F}_{p^m}$ by means of the Walsh transform. Then, we completely determine $3$-to-$1$ polynomials with degree no more than $4$ over $\mathbb{F}_{p^{m}}$. Furthermore, we obtain an AGW-like criterion for characterizing an equivalent relationship between the $n$-to-$1$ property of a mapping over finite set $A$ and that of another mapping over a subset of $A$. Finally, we apply the AGW-like criterion into several forms of polynomials and obtain some explicit $n$-to-$1$ mappings. Especially, three explicit constructions of the form $x^rh\left( x^s \right) $ from the cyclotomic perspective, and several classes of $n$-to-$1$ mappings of the form $ g\left( x^{q^k} -x +δ\right) +cx$ are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源