论文标题

prandtl运算符取消的矢量字段

Vector fields of Cancellation for the Prandtl Operators

论文作者

Yang, Tong

论文摘要

It has been a fascinating topic in the study of boundary layer theory about the well-posedness of Prandtl equation that was derived in 1904. Recently, new ideas about cancellation to overcome the loss of tangential derivatives were obtained so that Prandtl equation can be shown to be well-posed in Sobolev spaces to avoid the use of Crocco transformation as in the classical work of Oleinik.此简短说明旨在表明,取消机制实际上与某些内在的定向衍生物有关,该定向衍生物可用于在边界附近的流体上恢复某些结构假设。

It has been a fascinating topic in the study of boundary layer theory about the well-posedness of Prandtl equation that was derived in 1904. Recently, new ideas about cancellation to overcome the loss of tangential derivatives were obtained so that Prandtl equation can be shown to be well-posed in Sobolev spaces to avoid the use of Crocco transformation as in the classical work of Oleinik. This short note aims to show that the cancellation mechanism is in fact related to some intrinsic directional derivative that can be used to recover the tangential derivative under some structural assumption on the fluid near the boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源