论文标题
关于归因图对齐的有效算法的可行区域
On the Feasible Region of Efficient Algorithms for Attributed Graph Alignment
论文作者
论文摘要
图形对齐旨在查找两个相关图之间的顶点对应关系,该任务经常发生在诸如社交网络分析之类的图挖掘应用程序中。归因图对齐是图形对齐的变体,其中利用公开可用的侧面信息或属性来辅助图形对齐。现有关于归因图对齐的研究将重点放在理论性能上,而无需计算限制或有效算法的经验性能。这促使我们使用理论性能保证研究有效的算法。在本文中,我们提出了两种多项式时间算法,这些算法以高概率精确恢复了顶点对应关系。与信息理论限制相比,所提出的算法的可行区域几乎是最佳的。当在种子ERDőS--Rényi图模型下专门研究种子图对准问题时,所提出的算法扩展了最著名的可行区域,以通过多项式时间算法确切对齐。
Graph alignment aims at finding the vertex correspondence between two correlated graphs, a task that frequently occurs in graph mining applications such as social network analysis. Attributed graph alignment is a variant of graph alignment, in which publicly available side information or attributes are exploited to assist graph alignment. Existing studies on attributed graph alignment focus on either theoretical performance without computational constraints or empirical performance of efficient algorithms. This motivates us to investigate efficient algorithms with theoretical performance guarantee. In this paper, we propose two polynomial-time algorithms that exactly recover the vertex correspondence with high probability. The feasible region of the proposed algorithms is near optimal compared to the information-theoretic limits. When specialized to the seeded graph alignment problem under the seeded Erdős--Rényi graph pair model, the proposed algorithms extends the best known feasible region for exact alignment by polynomial-time algorithms.