论文标题
实时自动息肉在结肠镜检查中使用特征增强模块和时空相关单元
Real-time automatic polyp detection in colonoscopy using feature enhancement module and spatiotemporal similarity correlation unit
论文作者
论文摘要
息肉的自动检测是具有挑战性的,因为不同的息肉差异很大,而息肉和类似物之间的变化很小。最先进的方法基于卷积神经网络(CNN)。但是,由于缺乏培训数据,它们可能未能通过,导致遗漏的检测和误报率很高(FPS)。为了解决这些问题,我们的方法将基于二维(2-D)CNN的实时对象检测器网络与时空信息结合在一起。首先,我们使用二维探测器网络来检测静态图像和帧,并基于检测器网络,我们提出了两个功能增强模块 - FP重新学习模块(FPRM),以使探测器网络更多地了解FPS的功能以提高精确精度,并提高图像样式转移模块(ISTM),以增强polyps of Sectitivity Importivity Interivitive forsitivity forsitive forsitive forsitivity revimititive。在视频检测中,我们集成了时空信息,该信息使用结构相似性(SSIM)来测量视频帧之间的相似性。最后,我们提出了框架间相关性单元(ISCU),以结合通过检测器网络获得的结果和框架相似性以做出最终决定。我们在私人数据库和公开可用的数据库上验证我们的方法。实验结果表明,与基线方法相比,这些模块和单元可提供性能提高。与最先进的方法的比较表明,所提出的方法优于现有方法,可以满足实时约束。证明我们的方法在灵敏度,精度和特异性方面提供了提高的性能,并且具有在临床结肠镜检查中应用的巨大潜力。
Automatic detection of polyps is challenging because different polyps vary greatly, while the changes between polyps and their analogues are small. The state-of-the-art methods are based on convolutional neural networks (CNNs). However, they may fail due to lack of training data, resulting in high rates of missed detection and false positives (FPs). In order to solve these problems, our method combines the two-dimensional (2-D) CNN-based real-time object detector network with spatiotemporal information. Firstly, we use a 2-D detector network to detect static images and frames, and based on the detector network, we propose two feature enhancement modules-the FP Relearning Module (FPRM) to make the detector network learning more about the features of FPs for higher precision, and the Image Style Transfer Module (ISTM) to enhance the features of polyps for sensitivity improvement. In video detection, we integrate spatiotemporal information, which uses Structural Similarity (SSIM) to measure the similarity between video frames. Finally, we propose the Inter-frame Similarity Correlation Unit (ISCU) to combine the results obtained by the detector network and frame similarity to make the final decision. We verify our method on both private databases and publicly available databases. Experimental results show that these modules and units provide a performance improvement compared with the baseline method. Comparison with the state-of-the-art methods shows that the proposed method outperforms the existing ones which can meet real-time constraints. It's demonstrated that our method provides a performance improvement in sensitivity, precision and specificity, and has great potential to be applied in clinical colonoscopy.