论文标题
NAMBU-JONA-LASINIO模型和QCD相图的颜色味道依赖性
Color-flavor dependence of the Nambu-Jona-Lasinio model and QCD phase diagram
论文作者
论文摘要
我们使用Nambu-Jona-lasinio(NJL)模型的Quarks模型研究了各种数量的Light Quarks $ N_F $和颜色$ N_C $的动力性手性对称性破坏/修复,并以有效耦合的颜色饮食依赖性。最初,我们设置$ n_f = 2 $,并改变颜色$ n_c $的数量,我们发现当$ n_c $超过其关键值$ n^{c} _ {c} _ {c} \ oft2.2 $时,动态性手性对称性被打破。其次,我们采用$ n_c = 3 $,并且不同的是$ n_f $,我们观察到当$ n_f $达到其关键值$ n^{c} _ {f} _ {f} \ oft8 $时,动态性手性对称性将恢复。强大的相互作用观察到$ n_c $和$ n_f $,即$ n_c $ andi canti cantscreens强烈的互动,通过增强动力学质量和夸克 - 易夸克冷凝水,而$ n_f $通过抑制两个参数来筛选强相互作用。我们进一步勾勒出有限温度的量子染色体动力学(QCD)相图,$ t $和夸克化学势$μ$,用于各种$ n_c $和$ n_f $。在有限的$ t $和$μ$的情况下,我们观察到颜色的关键数量$ n^{c} _c $增强,而关键数量的口味$ n^{c} _f $抑制为$ t $和$μ$。当然,参数$ t $和$μ$会产生筛选效果。因此,关键温度$ t_c $,$μ_c$和关键端点$(t^{e} _C,μ^{e} _C)$在QCD相图中的c $(t^{e} _C)$在$ n_c $增加时增强,而$ n_f $增加时会增加。我们的发现与晶格QCD和Schwinger-Dyson方程预测一致。
We study the dynamical chiral symmetry breaking/restoration for the various numbers of light quarks flavors $N_f$ and colors $N_c$, using the Nambu-Jona-Lasinio (NJL) model of quarks, dressed with a color-flavor dependence of effective coupling. Initially, we set $N_f = 2$, and varying the number of colors $N_c$, we find that the dynamical chiral symmetry is broken when $N_c$ exceeds to its critical value $N^{c}_{c}\approx2.2$. Secondly, we take $N_c = 3$, and varying $N_f$, we observed that the dynamical chiral symmetry is restored when $N_f$ reaches to its critical value $N^{c}_{f}\approx8$. The strong interplay observed between $N_c$ and $N_f$, i.e., $N_c$ anti-screens the strong interactions by strengthening the dynamical mass and quark-antiquark condensate, while $N_f$ screens the strong interaction by suppressing both the parameters. We further sketch the quantum chromodynamics (QCD) phase diagram at finite temperature $T$ and quark chemical potential $μ$ for various $N_c$ and $N_f$. At finite $T$ and $μ$, we observed that the critical number of colors $N^{c}_c$ enhances while the critical number of flavors $N^{c}_f$ suppresses as $T$ and $μ$ increases. Of course, the parameters $T$ and $μ$ produce the screening effect. Consequently, the critical temperature $T_c$, $μ_c$ and co-ordinates of the critical endpoint $(T^{E}_c,μ^{E}_c)$ in the QCD phase diagram enhances as $N_c$ increases while suppresses when $N_f$ increases. Our findings agree with the Lattice QCD and Schwinger-Dyson equations predictions.