论文标题

在机器型通信中随机访问的深度加固学习

Deep Reinforcement Learning for Random Access in Machine-Type Communication

论文作者

Jadoon, Muhammad Awais, Pastore, Adriano, Navarro, Monica, Perez-Cruz, Fernando

论文摘要

随机访问(RA)方案是对机器类型通信(MTC)高度兴趣的话题。在RA协议中,诸如指数向后(EB)之类的退缩技术用于稳定系统,以避免吞吐量低和过度延迟。但是,对于不同的基本假设和分析模型,这些退缩技术显示出不同的性能。因此,为开槽的Aloha RA找到更好的传输政策仍然是一个挑战。在本文中,我们展示了RA的深入增强学习(DRL)的潜力。我们学习一项在吞吐量和公平之间平衡的传输政策。所提出的算法使用先前的动作和二进制反馈信号来学习传输概率,并且它适应不同的流量到达率。此外,我们建议将数据包(AOP)的平均年龄作为指标来衡量用户之间的公平性。我们的结果表明,根据吞吐量和公平性,拟议的政策优于基线EB传输方案。

Random access (RA) schemes are a topic of high interest in machine-type communication (MTC). In RA protocols, backoff techniques such as exponential backoff (EB) are used to stabilize the system to avoid low throughput and excessive delays. However, these backoff techniques show varying performance for different underlying assumptions and analytical models. Therefore, finding a better transmission policy for slotted ALOHA RA is still a challenge. In this paper, we show the potential of deep reinforcement learning (DRL) for RA. We learn a transmission policy that balances between throughput and fairness. The proposed algorithm learns transmission probabilities using previous action and binary feedback signal, and it is adaptive to different traffic arrival rates. Moreover, we propose average age of packet (AoP) as a metric to measure fairness among users. Our results show that the proposed policy outperforms the baseline EB transmission schemes in terms of throughput and fairness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源