论文标题

关于颤抖计划的降低

On the Reducedness of Quiver Schemes

论文作者

Zhou, Yehao

论文摘要

在本文中,我们证明,如果矩图平坦,则特征零中的颤抖方案将减少。我们使用降低的结果表明,二维$ \ MATHCAL n = 2 $ QUIVER GAUGE GRAUGE理论时,Equivariant Integration公式计算K-Theoretic Nekrasov分区函数。我们还为有限的A型Dynkin Quivers具有框架的矩图的平坦度的明确表征。作为一种应用,我们在A型中量化的Nakajima Quiver品种与类型A型抛物线有限的W-Algebra之间的关系中提供了ivan Lossev定理的改进。

In this paper we prove that a quiver scheme in characteristic zero is reduced if the moment map is flat. We use the reducedness result to show that the equivariant integration formula computes the K-theoretic Nekrasov partition function of five dimensional $\mathcal N=2$ quiver gauge theories when the moment map is flat. We also give an explicit characterization of flatness of moment map for finite and affine type A Dynkin quivers with framings. As an application, we give a refinement of a theorem of Ivan Losev on the relation between quantized Nakajima quiver variety in type A and parabolic finite W-algebra in type A.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源