论文标题
公制性重力中的理论和观察性aspecs:一个领域的理论观点
Theoretical and Observational Aspecs in Metric-Affine Gravity: A field theoretic perspective
论文作者
论文摘要
在本博士学位论文中,我们处理了重力理论的几种理论和现象学基础。具体而言,我们首先对必要的工具进行了广泛的介绍,以理解框架并详细说明在扭转和非赞誉的情况下几何和物质之间的最小耦合处方的一些细微之处。然后,我们将论文的中心部分献给研究基于RICCI的重力(RBG)理论的结构,该理论将在以后用于理解公制型理论的通用特性。我们首先分析RBG场方程的结构及其解决方案空间的非平凡方面。然后,我们分析一些球形对称溶液的浸润光谱。然后,我们表明,如果这些理论中的投影对称性被明确破坏,那么就会出现幽灵的自由度,我们认为这将是公制重力理论的一般特征。这样做之后,我们通过EFT镜头分析了公路芬理论,显示了非对称形式在通用理论中的特定形式,在这种形式中,对称对称的ricci tensor出现在爱因斯坦 - 希尔伯特术语之外的动作中。这是我们用来对这些理论施加严格限制的有效互动的。在论文的第三部分中,我们提出了与RBG理论的结构无关的作品的米塞拉尼亚。我们首先研究了一种用于公制植物方法中洛伦兹对称性的自发断裂模型,即大黄蜂模型。在下一章中,我们将Perlick给出的适当时间的共形不变定义定义为案例。最后,我们提出的论点表明,最近提出的D4EGB理论并未以其原始形式定义。我们以简短的前景结束。
In this PhD thesis we deal with several theoretical and phenomenological apsects of metric-affine theories of gravity. Concretely, we first give a broad introduction to the necessary tools to understand the framework and elaborate on some subtleties of the minimal coupling prescription between geometry and matter in presence of torsion and nonmetricity. Then we dedicate the central part of the thesis to study the structure of Ricci Based gravity (RBG) theories, which will be of later use to understand generic properties of metric-affine theories. We begin by analysing the structure of the RBG field equations and nontrivial aspects of their solution space. We then analyse the abrosption spectra of some spherically symmetric solutions. Then, we show that, if the projective symmetry in these theories is explicitly broken, then there arise ghost degrees of freedom, and we argue that this will be a generic feature of metric-affine gravity theories. Having done this, we analyse metricafine theories through the EFT lens, showing how the nonmetricity tkes a particular form in generic theories where the symmetrised Ricci tensor appears in the action beyond the Einstein-Hilbert term. This sources effective interactions that we use to place tight constraints to these theories. In the third part of the thesis we present a miscelanea of works which are not so related to the structure of RBG theories. We begin by studying a model for spontaneous breaking of Lorentz symmetry, namely the bumblebee model, in the metric-affine approach. In the following chapter we generalise a conformal invariant definition of proper time given by Perlick to the case with general nonmetricity. Finally, we present arguments that show that the recently proposed D4EGB theory is not well defined in its original form. We finish with a brief outlook.