论文标题
pH-net:通过3D卷积神经网络平行教微结构均质化
PH-Net: Parallelepiped Microstructure Homogenization via 3D Convolutional Neural Networks
论文作者
论文摘要
随着添加剂制造的快速发展,微观结构吸引了学术和工业利益。已经对数值均质化方法进行了充分的研究,以分析微观结构的机械行为。但是,要应用于在线计算或需要高频调用的应用程序,例如拓扑优化,这太耗时了。数据驱动的均质化方法是一种更有效的选择,但将微结构限制为立方形状,这对于具有更一般形状的周期性微观结构而言是不可行的,例如平行任平。本文介绍了精细设计的3D卷积神经网络(CNN),用于快速对平行形的微观结构(称为pH-net)。 pH-NET优于现有的数据驱动方法,可以预测指定宏观菌株中微观结构的局部位移,而不是直接均匀的材料,激励我们根据最小的势能提出了无标签的损失函数。对于数据集构造,我们引入了形状材料转换和体素材料张量,以将微结构类型,基本材料和边界形状一起编码为PH-NET的输入,从而使其对CNN友好,并在微结构类型,基本材料和边界形状方面对pH-NET增强了PH-NET。与数值均质化方法相比,PH-NET可以预测数百种加速度的均质化性能,甚至支持在线计算。此外,它不需要标记的数据集,因此比培训处理中当前的深度学习方法快得多。受益于预测局部位移,pH-NET既提供均匀的材料特性,又提供微观机械性能,例如应变和应力分布,屈服强度等。我们设计了一组物理实验并验证pH-NET的预测准确性。
Microstructures are attracting academic and industrial interests with the rapid development of additive manufacturing. The numerical homogenization method has been well studied for analyzing mechanical behaviors of microstructures; however, it is too time-consuming to be applied to online computing or applications requiring high-frequency calling, e.g., topology optimization. Data-driven homogenization methods emerge as a more efficient choice but limit the microstructures into a cubic shape, which are infeasible to the periodic microstructures with a more general shape, e.g., parallelepiped. This paper introduces a fine-designed 3D convolutional neural network (CNN) for fast homogenization of parallel-shaped microstructures, named PH-Net. Superior to existing data-driven methods, PH-Net predicts the local displacements of microstructures under specified macroscope strains instead of direct homogeneous material, motivating us to present a label-free loss function based on minimal potential energy. For dataset construction, we introduce a shape-material transformation and voxel-material tensor to encode microstructure type,base material and boundary shape together as the input of PH-Net, such that it is CNN-friendly and enhances PH-Net on generalization in terms of microstructure type, base material, and boundary shape. PH-Net predicts homogenized properties with hundreds of acceleration compared to the numerical homogenization method and even supports online computing. Moreover, it does not require a labeled dataset and thus is much faster than current deep learning methods in training processing. Benefiting from predicting local displacement, PH-Net provides both homogeneous material properties and microscopic mechanical properties, e.g., strain and stress distribution, yield strength, etc. We design a group of physical experiments and verify the prediction accuracy of PH-Net.