论文标题

自动检测多层社区:可扩展和分辨率无限

Automatic detection of multilevel communities: scalable and resolution-limit-free

论文作者

Gao, Kun, Ren, Xuezao, Zhou, Lei, Zhu, Junfang

论文摘要

社区结构是复杂网络的最重要特征之一。基于模块化的社区检测方法通常依靠启发式算法来优化特定的社区质量功能。此类方法受两个主要缺陷的限制:(1)分辨率限制问题,该问题禁止同时检测到异质大小的群落,以及(2)启发式算法的不同输出,这使得难以区分相关和无关结果。在本文中,我们提出了一种改进的基于可扩展社区“健身功能”的社区检测方法。我们引入了一个新的参数,以增强其可扩展性,并制定了过滤输出的严格策略。由于可伸缩性,一方面,我们的方法没有分辨率限制问题,并且在大型异质网络上表现出色,而另一方面,它能够检测到与深层层次网络中以前的方法相比,它能够检测到更多的社区。此外,我们严格的策略会自动消除无人选择的冗余和无关紧要的结果。结果,我们的方法仅整齐地输出稳定且独特的社区,这些社区在很大程度上可以通过有关网络的先验知识来解释,包括合成网络中的植入结构,或用于现实世界网络的元数据。

Community structure is one of the most important features of complex networks. Modularity-based methods for community detection typically rely on heuristic algorithms to optimize a specific community quality function. Such methods are limited by two major defects: (1) the resolution limit problem, which prohibits communities of heterogeneous sizes being simultaneously detected, and (2) divergent outputs of the heuristic algorithm, which make it difficult to differentiate relevant and irrelevant results. In this paper, we propose an improved method for community detection based on a scalable community "fitness function." We introduced a new parameter to enhance its scalability, and a strict strategy to filter the outputs. Due to the scalability, on the one hand our method is free of the resolution limit problem and performs excellently on large heterogeneous networks, while on the other hand it is capable of detecting more levels of communities than previous methods in deep hierarchical networks. Moreover, our strict strategy automatically removes redundant and irrelevant results, without any artificial selection. As a result, our method neatly outputs only the stable and unique communities, which are largely interpretable by the a priori knowledge about the network, including the implanted structures within synthetic networks, or metadata for real-world networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源