论文标题

杂种Kerr-Schild双场理论及其双阳米尔米尔公式

Heterotic Kerr-Schild Double Field Theory and its double Yang-Mills formulation

论文作者

Lescano, Eric, Roychowdhury, Sourav

论文摘要

我们提出了杂种双场理论(DFT)的表述,其中基本领域在$ O(d,d)$表示中。该理论是将$ O(D,D+K)$双重不变DFT拆分的。该过程为广义度量产生了一种绿色的机制,并且是一个基本量规场,该量规场仅作为量规连接,仅转换为领先顺序。参数化后,前者在度量张量上诱导了非交流的转换,可以考虑到现场重新定义,并在B场上删除了普通的绿色 - 雪Warz机构。在此框架内,我们探索了杂种DFT的扰动特性。我们使用广义的Kerr-Schild Ansatz(GKSA)的放松版本,其中将广义背景度量驱动到二次序列,考虑到单个无效矢量,并且在参数化之前对量规场进行线性扰动。最后,我们比较了量规场和广义度量的动力学,以便检查DFT级别经典双复制对应关系的行为。

We present a formulation of heterotic Double Field Theory (DFT), where the fundamental fields are in $O(D,D)$ representations. The theory is obtained splitting an $O(D,D+K)$ duality invariant DFT. This procedure produces a Green-Schwarz mechanism for the generalized metric, and a fundamental gauge field which transforms as a gauge connection only to leading order. After parametrization, the former induces a non-covariant transformation on the metric tensor, which can be removed considering field redefinitions, and an ordinary Green-Schwarz mechanism on the b-field. Within this framework we explore perturbative properties of heterotic DFT. We use a relaxed version of the generalized Kerr-Schild ansatz (GKSA), where the generalized background metric is perturbed up to quadratic order considering a single null vector and the gauge field is linearly perturbed before parametrization. Finally we compare the dynamics of the gauge field and the generalized metric in order to inspect the behavior of the classical double copy correspondence at the DFT level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源