论文标题
在暂时的关注下预测网状降低空间的物理
Predicting Physics in Mesh-reduced Space with Temporal Attention
论文作者
论文摘要
基于图的下一步预测模型最近在对不规则网格上的复杂高维物理系统进行建模方面非常成功。但是,由于它们的时间较短,这些模型会遭受错误的积累和漂移的影响。在本文中,我们提出了一种通过变压器式的时间注意模型来捕获长期依赖性的新方法。我们介绍了一个编码器码头结构,以汇总特征并创建系统状态的紧凑网格表示,以允许时间模型以内存有效的方式在低维网格表示上操作。我们的方法在几个复杂的流体动力学预测任务上(从声音冲击到血管流动)上优于竞争性GNN基线。我们展示了稳定的推出,而无需训练噪声,即使在很长的序列中,也可以显示出完美的相位预测。更广泛地说,我们相信我们的方法为将基于注意力的序列模型的好处带入解决高维复杂的物理任务的方式铺平了道路。
Graph-based next-step prediction models have recently been very successful in modeling complex high-dimensional physical systems on irregular meshes. However, due to their short temporal attention span, these models suffer from error accumulation and drift. In this paper, we propose a new method that captures long-term dependencies through a transformer-style temporal attention model. We introduce an encoder-decoder structure to summarize features and create a compact mesh representation of the system state, to allow the temporal model to operate on a low-dimensional mesh representations in a memory efficient manner. Our method outperforms a competitive GNN baseline on several complex fluid dynamics prediction tasks, from sonic shocks to vascular flow. We demonstrate stable rollouts without the need for training noise and show perfectly phase-stable predictions even for very long sequences. More broadly, we believe our approach paves the way to bringing the benefits of attention-based sequence models to solving high-dimensional complex physics tasks.