论文标题

球形拓扑的重力潜力

Gravitational potential in spherical topologies

论文作者

Vigneron, Quentin, Roukema, Boudewijn F.

论文摘要

我们研究了不同拓扑的球形宇宙中牛顿重力潜力的特性。为此,我们使用Vigneron开发的非欧几里得牛顿理论[2022,class。 &量子引力,39,155006]描述球形或双曲线宇宙中的牛顿引力。在所有全球均匀的常规球形拓扑中计算的电位是针对点质量的,即其基本结构域是独一无二的并且是柏拉图固体。我们在点质量附近的测试位置提供了精确的溶液和电势的泰勒膨胀序列。我们表明,扩展的奇数可以解释为来自非零空间标量曲率的存在,而均匀的术语与拓扑空间的封闭性质有关。结果是,与3多头的点质量解决方案相比,在牛顿宇宙学模拟中广泛使用的球形案例都具有仅取决于空间曲率的额外有吸引力的一阶项。拓扑的选择只会影响二阶和更高的潜力。对于宇宙学量表(曲率和拓扑)的典型估计,最强大的拓扑作用发生在庞加莱十二面体空间的情况下,但通常,曲率对拓扑的影响占主导地位。我们还提供了一组方程,可用于在球形拓扑中执行结构形成的$ n $体体。

We study the properties of the Newtonian gravitational potential in a spherical Universe for different topologies. For this, we use the non-Euclidean Newtonian theory developed in Vigneron [2022, Class. & Quantum Gravity, 39, 155006] describing Newtonian gravitation in a spherical or hyperbolic Universe. The potential is calculated for a point mass in all the globally homogeneous regular spherical topologies, i.e. whose fundamental domain is unique and is a platonic solid. We provide the exact solution and the Taylor expansion series of the potential at a test position near the point mass. We show that the odd terms of the expansion can be interpreted as coming from the presence of a non-zero spatial scalar curvature, while the even terms relate to the closed nature of the topological space. A consequence is that, compared to the point mass solution in a 3-torus, widely used in Newtonian cosmological simulations, the spherical cases all feature an additional attractive first order term dependent solely on the spatial curvature. The choice of topology only affects the potential at second order and higher. For typical estimates of cosmological scales (curvature and topology), the strongest topological effect occurs in the case of the Poincaré dodecahedral space, but in general the effect of curvature dominates over topology. We also provide the set of equations that can be used to perform $N$-body simulations of structure formation in spherical topologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源