论文标题
因果网络类别
Causal-net category
论文作者
论文摘要
因果网络是有限的无环向图。在本文中,我们介绍了一个类别,该类别用$ \ mathbf {cau} $表示,并称为Causal-Net类别,其对象是因果网,两个因果网络之间的形态是其路径类别之间的函数。类别$ \ mathbf {cau} $实际上是“因果网络上的免费类别” Monad的Kleisli类别。首先,我们激励$ \ Mathbf {Cau} $的研究,并说明其在因果网凝结框架中的应用。我们表明,恰好有六种类型的不可分解的形态,它们对应于单型类别的六个图形骨化惯例。其次,我们研究了$ \ Mathbf {Cau} $中几类形成类的形态类别,这些形态在因果网络中的有趣部分订单,例如粗粒,合并,收缩,浸入式,磨损,拓扑,拓扑次要的次要次数等,并提出几个有用的分解定理。第三,我们引入了一个针对小理论的分类框架,并使用它来研究$ \ mathbf {cau} $中的几种类型的通用未成年人。此外,我们证明了一个基本理论,即$ \ Mathbf {Cau} $中的任何形态都是对六种类型的不可分解的形态的组成,并且表明色彩和精确的次要概念可以理解为特殊的最低品质和亚物质的特殊种类,$ \ m m iathbf} $相应地相应地。基于这些结果,我们得出的结论是,$ \ mathbf {cau} $是研究因果网络的自然环境,$ \ mathbf {cau} $的理论应该为图理论的类别理论理解提供新的启示。
A causal-net is a finite acyclic directed graph. In this paper, we introduce a category, denoted by $\mathbf{Cau}$ and called causal-net category, whose objects are causal-nets and morphisms between two causal-nets are the functors between their path categories. The category $\mathbf{Cau}$ is in fact the Kleisli category of the "free category on a causal-net" monad. Firstly, we motivate the study of $\mathbf{Cau}$ and illustrate its application in the framework of causal-net condensation. We show that there are exactly six types of indecomposable morphisms, which correspond to six conventions of graphical calculi for monoidal categories. Secondly, we study several composition-closed classes of morphisms in $\mathbf{Cau}$, which characterize interesting partial orders among causal-nets, such as coarse-graining, merging, contraction, immersion-minor, topological minor, etc., and prove several useful decomposition theorems. Thirdly, we introduce a categorical framework for minor theory and use it to study several types of generalized minors in $\mathbf{Cau}$. In addition, we prove a fundamental theorem that any morphism in $\mathbf{Cau}$ is a composition of the six types of indecomposable morphisms, and show that the notions of coloring and exact minor can be understood as special kinds of minimal-quotient and sub-quotient in $\mathbf{Cau}$, respectively. Base on these results, we conclude that $\mathbf{Cau}$ is a natural setting for studying causal-nets, and the theory of $\mathbf{Cau}$ should shed new light on the category-theoretic understanding of graph theory.