论文标题

垂直联合边缘学习具有分布式集成感应和交流

Vertical Federated Edge Learning with Distributed Integrated Sensing and Communication

论文作者

Liu, Peixi, Zhu, Guangxu, Jiang, Wei, Luo, Wu, Xu, Jie, Cui, Shuguang

论文摘要

这封信通过利用分布式的集成感应和通信(ISAC)来研究垂直联合边缘学习(FEES)系统,以实现协作对象/人类运动识别。在此系统中,分布式边缘设备首先将无线信号发送到有针对性的对象/人,然后交换中间计算的向量(而不是原始感应数据),以便在保留数据隐私的同时进行协作识别。为了提高感觉的频谱和硬件利用效率,我们通过在每个边缘设备上采用专用频率调制连续波(FMCW)信号来利用ISAC来进行目标传感和数据交换。在此设置下,我们提出了一个垂直感觉框架,用于根据收集的多视线无线传感数据来实现识别。在此框架中,每个边缘设备都拥有一个单独的局部L模型,将其传感数据转换为具有相对较低尺寸的中间矢量,然后将其传输到通过公共下游S-Model的最终输出的协调边缘设备。通过考虑人类运动识别任务,实验结果表明,与基准相比,我们基于垂直的感觉的方法可实现高达98 \%的识别精度,最高为8 \%,包括在设备训练和水平感觉中。

This letter studies a vertical federated edge learning (FEEL) system for collaborative objects/human motion recognition by exploiting the distributed integrated sensing and communication (ISAC). In this system, distributed edge devices first send wireless signals to sense targeted objects/human, and then exchange intermediate computed vectors (instead of raw sensing data) for collaborative recognition while preserving data privacy. To boost the spectrum and hardware utilization efficiency for FEEL, we exploit ISAC for both target sensing and data exchange, by employing dedicated frequency-modulated continuous-wave (FMCW) signals at each edge device. Under this setup, we propose a vertical FEEL framework for realizing the recognition based on the collected multi-view wireless sensing data. In this framework, each edge device owns an individual local L-model to transform its sensing data into an intermediate vector with relatively low dimensions, which is then transmitted to a coordinating edge device for final output via a common downstream S-model. By considering a human motion recognition task, experimental results show that our vertical FEEL based approach achieves recognition accuracy up to 98\% with an improvement up to 8\% compared to the benchmarks, including on-device training and horizontal FEEL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源