论文标题

为6G网络提供节能的分布式联合学习

Towards Energy Efficient Distributed Federated Learning for 6G Networks

论文作者

Khowaja, Sunder Ali, Dev, Kapal, Khuwaja, Parus, Bellavista, Paolo

论文摘要

通过便携式和移动设备(例如航空基站)提供通信服务是在5G/6G网络中实现的关键概念。通常,物联网/边缘设备需要将数据直接传输到基站,以使用机器学习技术训练模型。数据传输引入了可能导致安全问题和货币损失的隐私问题。最近,提议联邦学习通过与基站的模型共享来部分解决隐私问题。但是,联邦学习的集中性质仅允许基站附近的设备共享受过训练的模型。此外,远程通信迫使设备增加传输功率,从而提高了能源效率。在这项工作中,我们提出了分布式联合学习(DBFL)框架,该框架克服了遥远设备的连接性和能源效率问题。 DBFL框架与移动边缘计算体系结构兼容,该体系结构使用聚类协议以分布式方式连接设备。实验结果表明,与常规联邦学习相比,该框架将分类性能提高了7.4 \%,同时减少了能耗。

The provision of communication services via portable and mobile devices, such as aerial base stations, is a crucial concept to be realized in 5G/6G networks. Conventionally, IoT/edge devices need to transmit the data directly to the base station for training the model using machine learning techniques. The data transmission introduces privacy issues that might lead to security concerns and monetary losses. Recently, Federated learning was proposed to partially solve privacy issues via model-sharing with base station. However, the centralized nature of federated learning only allow the devices within the vicinity of base stations to share the trained models. Furthermore, the long-range communication compels the devices to increase transmission power, which raises the energy efficiency concerns. In this work, we propose distributed federated learning (DBFL) framework that overcomes the connectivity and energy efficiency issues for distant devices. The DBFL framework is compatible with mobile edge computing architecture that connects the devices in a distributed manner using clustering protocols. Experimental results show that the framework increases the classification performance by 7.4\% in comparison to conventional federated learning while reducing the energy consumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源