论文标题
超级流体绝缘子绝缘子量子相变于腔光磁系统
Superfluid-Mott insulator quantum phase transition in a cavity optomagnonic system
论文作者
论文摘要
新兴的混合腔光磁系统是一个非常有前途的量子信息处理平台,用于实验中微米尺度上其强或超肌光子 - 磁通相互作用。在本文中,基于此特征,已经研究了二维腔光磁磁阵列系统中的超氟绝缘体量子相变。临界跳跃率的分析解决方案是通过平均场方法,第二扰动理论和Landau二阶相变理论获得的。数值结果表明,耦合强度的增加和光子的正呼吸和镁的偏爱相干性,然后相应地压缩了Mott Lobes的稳定区域。此外,当总激发数较低时,分析结果与数值结果一致。最后,构建了有效的排斥潜力以表现出相应的机制。此处获得的结果提供了一个实验可行的方案,用于表征腔磁磁阵列系统中量子相变的量子转变,该系统将为量子模拟提供宝贵的见解。
The emerging hybrid cavity optomagnonic system is a very promising quantum information processing platform for its strong or ultrastrong photon-magnon interaction on the scale of micrometers in the experiment. In this paper, the superfluid-Mott insulator quantum phase transition in a two-dimensional cavity optomagnonic array system has been studied based on this characteristic. The analytical solution of the critical hopping rate is obtained by the mean field approach, second perturbation theory and Landau second order phase transition theory. The numerical results show that the increasing coupling strength and the positive detunings of the photon and the magnon favor the coherence and then the stable areas of Mott lobes are compressed correspondingly. Moreover, the analytical results agree with the numerical ones when the total excitation number is lower. Finally, an effective repulsive potential is constructed to exhibit the corresponding mechanism. The results obtained here provide an experimentally feasible scheme for characterizing the quantum phase transitions in a cavity optomagnonic array system, which will offer valuable insight for quantum simulations.