论文标题
具有替代输入的群集状态量子电路的有效经典模拟
Efficient classical simulation of cluster state quantum circuits with alternative inputs
论文作者
论文摘要
我们提供了与群集状态量子计算相关的纯纠缠系统的新示例,这些系统可以有效地经典地模拟。在群集状态量子计算中,输入量子位在Bloch球的“赤道”中初始化,应用了$ CZ $门,最后使用$ z $测量值或测量$ \ cos(θ)x + \ sin(θ)y $ operators对量子的测量。我们考虑在修改初始化步骤时会发生什么,并表明对于有限程度$ d $的晶格,存在$λ\约2.06 $的常数,以至于以$λ^{ - d} $在$λ^{ - d} $之内的状态中准备量子,在一个状态的跟踪距离内,在计算基础上是依次的典型变化,该系统可以在依次的情况下进行典型的变化,以便在各种典型的情况下进行诸如远程分配,以使之各感典型的变化是有效的。 距离。在平方晶格中,$ d = 4 $,例如$λ^{ - d} \大约0.056 $。我们开发了该参数的粗粒子版本,该版本增加了经典效率区域的大小。在Quare Quarbits的平方晶格的情况下,经典可模拟的区域的大小将大小增加到至少$ \ \ \ \ \ \ \ \左右,实际上可能会增加到$ \左右。结果推广到更广泛的系统家族,包括在计算基础上与对角线相互作用的QUDIT系统,并且测量在计算基础上或对其无偏见。潜在的读者只想要简短的版本可以从图1到3中获得很多直觉。
We provide new examples of pure entangled systems related to cluster state quantum computation that can be efficiently simulated classically. In cluster state quantum computation input qubits are initialised in the `equator' of the Bloch sphere, $CZ$ gates are applied, and finally the qubits are measured adaptively using $Z$ measurements or measurements of $\cos(θ)X + \sin(θ)Y$ operators. We consider what happens when the initialisation step is modified, and show that for lattices of finite degree $D$, there is a constant $λ\approx 2.06$ such that if the qubits are prepared in a state that is within $λ^{-D}$ in trace distance of a state that is diagonal in the computational basis, then the system can be efficiently simulated classically in the sense of sampling from the output distribution within a desired total variation distance. In the square lattice with $D=4$ for instance, $λ^{-D} \approx 0.056$. We develop a coarse grained version of the argument which increases the size of the classically efficient region. In the case of the square lattice of qubits, the size of the classically simulatable region increases in size to at least around $\approx 0.070$, and in fact probably increases to around $\approx 0.1$. The results generalise to a broader family of systems, including qudit systems where the interaction is diagonal in the computational basis and the measurements are either in the computational basis or unbiased to it. Potential readers who only want the short version can get much of the intuition from figures 1 to 3.