论文标题

基于有效抽样的贝叶斯主动学习以进行突触表征

Efficient Sampling-Based Bayesian Active Learning for synaptic characterization

论文作者

Gontier, Camille, Surace, Simone Carlo, Delvendahl, Igor, Müller, Martin, Pfister, Jean-Pascal

论文摘要

贝叶斯主动学习(BAL)是学习模型参数的有效框架,其中选择了输入刺激以最大程度地提高观测值和未知参数之间的相互信息。但是,BAL对实验的适用性是有限的,因为它需要实时执行高维集成和优化:当前方法要么太耗时,要么仅适用于特定模型。在这里,我们提出了一个有效的基于采样的贝叶斯活跃学习(ESB-BAL)框架,该框架足够有效,可以在实时生物学实验中使用。我们将我们的方法应用于从突触后反应到诱发突触前作用电位的化学突触参数的问题。使用合成数据和突触全细胞贴片钳记录,我们表明我们的方法可以提高基于模型的推论的精度,从而为更加系统性和高效的生理学设计铺平了道路。

Bayesian Active Learning (BAL) is an efficient framework for learning the parameters of a model, in which input stimuli are selected to maximize the mutual information between the observations and the unknown parameters. However, the applicability of BAL to experiments is limited as it requires performing high-dimensional integrations and optimizations in real time: current methods are either too time consuming, or only applicable to specific models. Here, we propose an Efficient Sampling-Based Bayesian Active Learning (ESB-BAL) framework, which is efficient enough to be used in real-time biological experiments. We apply our method to the problem of estimating the parameters of a chemical synapse from the postsynaptic responses to evoked presynaptic action potentials. Using synthetic data and synaptic whole-cell patch-clamp recordings, we show that our method can improve the precision of model-based inferences, thereby paving the way towards more systematic and efficient experimental designs in physiology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源