论文标题
自我监督的深层视频超级分辨率
Self-Supervised Deep Blind Video Super-Resolution
论文作者
论文摘要
现有的基于深度学习的视频超分辨率(SR)方法通常取决于监督的学习方法,在这种方法中,训练数据通常是通过使用已知或预定义的内核(例如,双子核)的模糊操作生成的,然后进行拆卸操作。但是,由于降解过程很复杂,因此这些想法案例无法近似,因此这不适合实际应用。此外,在现实世界中获得高分辨率(HR)视频和相应的低分辨率(LR)视频很困难。为了克服这些问题,我们提出了一种自我监督的学习方法来解决盲视频SR问题,该方法同时估计了LR视频中的模糊内核和HR视频。直接使用LR视频作为监督通常会导致琐碎的解决方案,我们开发了一种简单有效的方法,根据视频SR的图像形成,从原始LR视频中生成辅助配对数据,以便可以通过生成的配对数据更好地限制网络的模糊kernel估计和潜在的HR视频恢复。此外,我们引入了一个光流估计模块,以利用相邻帧的信息进行HR视频修复。实验表明,我们的方法在基准和现实世界视频上对最先进的方法表现出色。
Existing deep learning-based video super-resolution (SR) methods usually depend on the supervised learning approach, where the training data is usually generated by the blurring operation with known or predefined kernels (e.g., Bicubic kernel) followed by a decimation operation. However, this does not hold for real applications as the degradation process is complex and cannot be approximated by these idea cases well. Moreover, obtaining high-resolution (HR) videos and the corresponding low-resolution (LR) ones in real-world scenarios is difficult. To overcome these problems, we propose a self-supervised learning method to solve the blind video SR problem, which simultaneously estimates blur kernels and HR videos from the LR videos. As directly using LR videos as supervision usually leads to trivial solutions, we develop a simple and effective method to generate auxiliary paired data from original LR videos according to the image formation of video SR, so that the networks can be better constrained by the generated paired data for both blur kernel estimation and latent HR video restoration. In addition, we introduce an optical flow estimation module to exploit the information from adjacent frames for HR video restoration. Experiments show that our method performs favorably against state-of-the-art ones on benchmarks and real-world videos.