论文标题

通过分裂和共同神经网络学习语法

Learning grammar with a divide-and-concur neural network

论文作者

Deyo, Sean, Elser, Veit

论文摘要

我们对无上下文的语法推断实施了分裂和分配的迭代投影方法。与大多数最新的自然语言处理模型不同,我们的方法需要相对较少的离散参数,从而使推断的语法可以直接解释 - 可以从解决方案中读取如何构建语法有效的句子。我们方法的另一个优点是,与许多其他模型所采用的数百GB培训数据相比,仅几句句子从几句句子中推断出有意义的语法规则。我们演示了几种应用方法的方法:分类单词并从头开始推断语法,采用现有语法并完善其类别和规则,并采用现有的语法并扩大其词典,因为它在新数据中遇到新单词时。

We implement a divide-and-concur iterative projection approach to context-free grammar inference. Unlike most state-of-the-art models of natural language processing, our method requires a relatively small number of discrete parameters, making the inferred grammar directly interpretable -- one can read off from a solution how to construct grammatically valid sentences. Another advantage of our approach is the ability to infer meaningful grammatical rules from just a few sentences, compared to the hundreds of gigabytes of training data many other models employ. We demonstrate several ways of applying our approach: classifying words and inferring a grammar from scratch, taking an existing grammar and refining its categories and rules, and taking an existing grammar and expanding its lexicon as it encounters new words in new data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源