论文标题

实时X射线相位对比成像使用Spinnet-基于斑点的相对比较神经网络

Real-time X-ray Phase-contrast Imaging Using SPINNet -- A Speckle-based Phase-contrast Imaging Neural Network

论文作者

Qiao, Zhi, Shi, Xianbo, Yao, Yudong, Wojcik, Michael J., Rebuffi, Luca, Cherukara, Mathew J., Assoufid, Lahsen

论文摘要

X射线相位对比成像对于可视化吸收鲜明对比度的样品的样品已经是必不可少的。在这方面,与传统方法相比,基于斑点的技术在空间分辨率,相位敏感性和实现灵活性方面具有显着优势。但是,他们的计算成本阻碍了他们更广泛的采用。通过利用深度学习的力量,我们开发了一种新的基于斑点的相对比成像神经网络(SPINNET),与现有方法相比,该相位检索速度至少提高了两个数量级。为了实现这一性能,我们将Spinnet与一种新颖的基于编码的遮罩技术相结合,这是基于斑点的方法的增强版本。使用此方案,我们在100毫秒的订单上证明了吸收和相位图像的同时重建,即使在群集中,传统的基于相关的分析也需要几分钟。除了显着提高速度外,我们的实验结果还表明,Spinnet的成像分辨率和相位检索质量优于现有的基于单发斑点的方法。此外,我们成功地证明了其在3D X射线相对比断层扫描中的应用。我们的结果表明,Spinnet可以启用许多需要高分辨率和快速数据采集和处理的应用,例如原位和OPERANDO 2D和3D相位对比度成像以及实时的AT WavelEmpent Metrology和Wavefront Sensing。

X-ray phase-contrast imaging has become indispensable for visualizing samples with low absorption contrast. In this regard, speckle-based techniques have shown significant advantages in spatial resolution, phase sensitivity, and implementation flexibility compared with traditional methods. However, their computational cost has hindered their wider adoption. By exploiting the power of deep learning, we developed a new speckle-based phase-contrast imaging neural network (SPINNet) that boosts the phase retrieval speed by at least two orders of magnitude compared to existing methods. To achieve this performance, we combined SPINNet with a novel coded-mask-based technique, an enhanced version of the speckle-based method. Using this scheme, we demonstrate a simultaneous reconstruction of absorption and phase images on the order of 100 ms, where a traditional correlation-based analysis would take several minutes even with a cluster. In addition to significant improvement in speed, our experimental results show that the imaging resolution and phase retrieval quality of SPINNet outperform existing single-shot speckle-based methods. Furthermore, we successfully demonstrate its application in 3D X-ray phase-contrast tomography. Our result shows that SPINNet could enable many applications requiring high-resolution and fast data acquisition and processing, such as in-situ and in-operando 2D and 3D phase-contrast imaging and real-time at-wavelength metrology and wavefront sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源