论文标题
自适应激发积分器链中的离散缩放和批判性
Discrete scaling and criticality in a chain of adaptive excitable integrators
论文作者
论文摘要
我们描述了一系列单向耦合的自适应激发元件,该元素是由一端从一端开始的随机过程缓慢驱动的,是在通过层次模型执行推理的系统中无法解决的不可减少不确定性的最小玩具模型。阈值潜力缓慢适应以确保灵敏度而不会浪费。活性和能量作为间歇性的脉冲雪崩释放,其分散缩放分布在很大程度上独立于外源输入形式。亚阈值活动和阈值电位表现出Lorentzian颞谱,其幂范围由链中的位置决定。亚阈值的双质性与细胞内膜电位的经验测量相似。我们建议,关键的皮层级联反应来自临界世界中代谢功耗和性能需求之间的权衡,而大脑电生理记录的时间缩放模式是从抑制亚基活动的加权线性组合和来自不同层次制度水平的脉冲的加权线性组合所产生的。
We describe a chain of unidirectionally coupled adaptive excitable elements slowly driven by a stochastic process from one end and open at the other end, as a minimal toy model of unresolved irreducible uncertainty in a system performing inference through a hierarchical model. Threshold potentials adapt slowly to ensure sensitivity without being wasteful. Activity and energy are released as intermittent avalanches of pulses with a discrete scaling distribution largely independent of the exogenous input form. Subthreshold activities and threshold potentials exhibit Lorentzian temporal spectra, with a power-law range determined by position in the chain. Subthreshold bistability closely resembles empirical measurements of intracellular membrane potential. We suggest that critical cortical cascades emerge from a trade-off between metabolic power consumption and performance requirements in a critical world, and that the temporal scaling patterns of brain electrophysiological recordings ensue from weighted linear combinations of subthreshold activities and pulses from different hierarchy levels.