论文标题
曲线上线束根的对数模量
Logarithmic moduli of roots of line bundles on curves
论文作者
论文摘要
我们使用对数线束的理论来构建曲线家族中线束根空间的压缩,从而概括了许多作者的工作。这是通过对热带和对数雅各布人(最近由Molcho和Wise建造的)的扭转的研究进行的。我们的模量空间带有一个“双重冲击周期”,测量给定根对微不足道的束的位点,我们用分段多项式函数的语言为该类提供了重言式公式(如Molcho-Pandharipande-Schmitt和Holmes-Schmitt and Holmes-Schwarz)。
We use the theory of logarithmic line bundles to construct compactifications of spaces of roots of a line bundle on a family of curves, generalising work of a number of authors. This runs via a study of the torsion in the tropical and logarithmic jacobians (recently constructed by Molcho and Wise). Our moduli space carries a `double ramification cycle' measuring the locus where the given root is isomorphic to the trivial bundle, and we give a tautological formula for this class in the language of piecewise polynomial functions (as recently developed by Molcho-Pandharipande-Schmitt and Holmes-Schwarz).