论文标题
SU(N)Hubbard模型的有限温度强耦合膨胀
Finite Temperature Strong Coupling Expansions for the SU(N) Hubbard Model
论文作者
论文摘要
我们为SU(N)Hubbard模型提供有限温度强耦合膨胀,以$βT$,$ W = \ exp {( - βU)} $和$ {1 \ aveβu} $的$βT$} $。扩展是在大规范的集合中完成的,并且在每个位置的一个粒子的密度下最有用,其中$ u $ y $比或顺序的带宽,扩展在宽温度范围内汇聚$ t^2/u \ \ \ \ \ lyssim \ t \ t \ t \ \ \ \ \ \ \ \ \ simsim \ 10 u $。通过将限制$ w \至0 $,在温度少于$ u $的情况下有效,扩展变成了穿着的SU(N)Heisenberg模型的高温膨胀,该模型包括最近的邻居交换,从$ t = 0 $ t = 0 $ t = 0 $ t = 0 $ t = 0 $ t = 0 $ t = 0 $ t = 0 $ t = 0 $ t = 0 $ t = 0 $ t = 0 $ t = 0 $ t = 0。在每个站点的一个粒子填充下,$ w \至0 $限制对应于有效的$ t-j $型号。通过温度的函数,可以通过熵的高原样行为来识别强相关性的发作。在每个位置一个粒子的小偏差下,可以以一个小参数$δ= 1-n $的幂来排列膨胀,这是每个位点偏离一个粒子的偏差,在该粒子中,领先的$βT$依赖项对应于无序的SU(N)背景中的孔。我们使用这些扩展来计算在广泛参数范围内在中等和高温下模型的热力学特性。
We develop finite temperature strong coupling expansions for the SU(N) Hubbard Model in powers of $βt$, $w=\exp{(-βU)}$ and ${1\over βU}$ for arbitrary filling. The expansions are done in the grand canonical ensemble and are most useful at a density of one particle per site, where for $U$ larger than or of order the Bandwidth, the expansions converge over a wide temperature range $t^2/U \ \lesssim \ T \ \lesssim \ 10 U$. By taking the limit $w\to 0$, valid at temperatures much less than $U$, the expansions turn into a high temperature expansion for a dressed SU(N) Heisenberg model that includes nearest-neighbor exchange, further neighbor exchanges and ring exchanges known from the $T=0$ perturbation theory of the SU(2) Hubbard model. Below a filling of one particle per site, the $w\to 0$ limit corresponds to an effective $t-J$ model. The onset of strong correlations can be identified by a plateau-like behavior in the entropy as a function of temperature. At small deviations from one particle per site, the expansions can be arranged in powers of a small parameter $δ=1-n$, the deviation from one particle per site, where the leading $βt$ dependent terms correspond to holes sloshing around in a disordered SU(N) background. We use these expansions to calculate the thermodynamic properties of the model at moderate and high temperatures over a wide parameter range.